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 5 Clinical Decision- Making in Cardiology
JOHN E. BRUSH JR. AND HARLAN M. KRUMHOLZ

Medicine is an information science. Information is being produced 
at an unprecedented rate and is readily accessible using electronic 
searches and hand- held devices, making skills to parse and use the 
appropriate information ever more important. Memorization of med-
ical facts is less a necessity, while processing knowledge and critical 
thinking remain essential for high- value medical care. Clinical deci-
sions and recommendations are critical features of medicine and, 
in the midst of a rapid expansion of medical knowledge, have never 
been more challenging. This chapter summarizes core competencies 
for clinical reasoning that should be mastered by expert practicing 
cardiologists.

Excellent clinical decisions require a command of medical knowl-
edge and a deep understanding of individual patients, including their 
preferences and goals. Good decisions take into account the limits of 
knowledge, uncertainty in measurements, and the play of chance.1–3 
Clinical reasoning is informed by both experiential and formal knowl-
edge learned through years of practice and study.4 The translation of 
medical knowledge into good patient- centered decisions is a key goal 
of clinical reasoning and is the hallmark of an expert clinician.

Clinical reasoning is often guided by simplified rules. Early in train-
ing, physicians are taught how to recognize specific clusters of signs 
and symptoms, place patients in diagnostic categories, and follow the 
rules that apply to those categories. For example, patients with partic-
ular findings might be labeled as having acute myocardial infarction 
(AMI), which would trigger treatment based on studies showing benefit 
from aspirin and beta- blocking agents. In this context, algorithmic tools 
are often used to direct actions. For example, guidelines recommend 
that a patient with a low ejection fraction should be considered for 
an automated implantable defibrillator, but only after considering the 
etiology of the systolic dysfunction and the timeframe of the disorder.

These rule- based algorithms are not intended to force actions, but 
to guide decisions. The best clinicians know when adherence to such 
algorithms is proper and when exceptions, based on the patient’s par-
ticular situation or preferences, can lead to divergence from these algo-
rithms. Divergence from guidelines may be appropriate, but requires 
adequate justification, documentation, and transparency.

Most of medical decision- making, however, lies outside of simple 
algorithms and requires judgment. There are two major settings, related 
to diagnosis and treatment, where clinical reasoning is critical.

First, there are decisions about classifying an individual who pres-
ents with symptoms or signs of disease into the proper diagnostic 
category. Book chapters and other reference materials are usually 
organized according to categories, such as a medical diagnosis. The 
chapter informs the reader about how a particular condition, such as 
aortic stenosis, might manifest. These labels are useful for clustering 
patients by common disease mechanisms, prognosis, and responses to 
therapeutic strategies.

But patients often do not present to medical attention fitting per-
fectly into pre- specified general diagnostic categories. They seek atten-
tion for symptoms, which requires the clinician to reverse the order 
of a typical textbook and to work inductively from a patient’s signs 
and symptoms toward a diagnostic label before a therapeutic plan can 

be developed. For a patient with dyspnea on exertion and a systolic 
murmur, aortic stenosis is a possibility, but the diagnosis is not conclu-
sive without further testing. In some cases, uncertainty persists. About a 
third of patients labeled with a principal discharge diagnosis of heart 
failure also receive treatments for other causes of dyspnea such as 
pneumonia or chronic obstructive pulmonary disease.5 This is the real-
ity of current practice.

Second, there are decisions about treatments. These decisions are 
also challenging because they involve weighing risks and benefits, 
speculating about estimates for these parameters, and aligning choices 
with the preferences of the patient. The likelihood of benefit is often 
probabilistic, as people are pursuing strategies to reduce risk without 
knowing whether they themselves will benefit. These decisions can 
occur in prevention, which addresses whether to intervene in the 
interest of preventing future health problems, based on an estimate of 
prognosis. In this setting, the risks and costs occur immediately while 
the benefit is anticipated to be in the future. These decisions can also 
involve treatments to address symptoms as well as reduce the immedi-
ate risk for someone with acute or chronic disease.

Risk stratification is an important application of probability and is 
often used to estimate patient risk and assist in decision- making. This 
approach generally uses the results of statistical models that have iden-
tified prognostic factors and incorporated them into a tool that may 
assist clinicians. In recent years, many tools have been developed to 
assist in the rapid assessment of patients.

Recent decades have witnessed the emergence of cognitive psy-
chology, a branch of psychology focused on how people make deci-
sions.6 The field demonstrated that people frequently develop useful 
reasoning shortcuts to circumvent the need to explicitly calculate 
probabilities, but these shortcuts come with biases that can lead 
decision- makers to deviate from the rules of logic and probability in 
predictable ways. Thus, a good understanding of clinical reasoning 
requires knowledge about logic and probability as well as cognitive 
psychology.

Cognitive psychologists have demonstrated how people often rely 
on intuition to make decisions in uncertain settings.6,7 For cognitive 
psychologists, intuition is not merely guessing, but has a specialized 
meaning. The cognitive psychologist Herbert Simon described intu-
ition by stating: “the situation has provided a cue; this cue has given 
the expert access to information stored in memory, and the informa-
tion provides the answer. Intuition is nothing more and nothing less 
than recognition” (see Classic References). Expert clinicians learn to 
use intuition to recognize diagnoses and make clinical decisions. They 
learn to calibrate their intuitive judgments using scientific evidence 
and clinical experience. They may also be susceptible to cognitive 
biases that are associated with such decision- making.

DIAGNOSTIC DECISIONS
Patients often present with descriptions of symptoms such as chest 
pain. Cues are scattered, like pieces of a jigsaw puzzle. Clinicians, like all 
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decision- makers, often use mental shortcuts called heuristics to orga-
nize cues and to turn an unstructured problem into a set of structured 
decisions.3,7 They are taught to collect the cues of an unstructured clin-
ical problem by using an organized history and physical examination.8 
When experts take a history, they use a process known as early hypoth-
esis generation to develop a list of 3 to 5 possible diagnoses very early 
in the process (see Classic References). This enables the questioning 
to become more direct and the clinician to become more engaged in 
the fact- finding exercise.

Studies show that the mechanism of diagnostic hypothesis gener-
ation varies, depending on the stage of training.8 Novice practitioners 
who lack clinical experience use causal reasoning, which tends to be 
slow and less accurate. As trainees gain experience, knowledge about 
diagnoses becomes encapsulated into illness scripts. An illness script 
is a schema or map that integrates conceptual information regarding a 
disease and links the concepts with case experience. As physicians gain 
further experience, they accrue experiential knowledge. One theory is 
that diagnostic experience is remembered through disease prototypes, 
which describe the typical features of a disease. Another theory is that 
experiential knowledge is remembered as specific instances called 
exemplars, which are memories of prior experiences that have been 
categorized and stored in long- term memory. With experience, a cli-
nician accumulates exemplars that are automatically retrievable and 
represented in memory in a fashion that is unique to that clinician and 
not generalizable among clinicians. Memories of exemplars give the 
expert an intuitive sense of both the base rates for particular diagnos-
tic categories and the relative frequencies of features for a diagnostic 
category.

Because clinicians start the diagnostic process by intuitively recog-
nizing familiar phenotypes stored in memory as exemplars, it becomes 
important to study how symptoms combine in individuals as unique 
symptom phenotypes. A recent study showed wide variation in symptom 
phenotypes among patients with AMI, which may have important impli-
cations on how we teach learners to recognize a diagnosis.9 The study 
also showed that women exhibited significantly more unique symptom 
phenotypes than men. Greater phenotypic variation could lead to more 
missed diagnoses and this is a promising area for further research.

After collecting, sorting, and organizing clinical data, clinicians often 
use a problem list as a tool to list, group, and prioritize clinical find-
ings. With additional clinical information, a problem statement can be 
defined more specifically. For example, shortness of breath may be an 
initial problem statement that is replaced by acute systolic heart fail-
ure, as further clinical information leads to a more refined problem 
statement that moves from symptom to diagnosis. They then use a dif-
ferential diagnosis to expand the list of possibilities to avoid premature 
closure of the search for the true diagnosis. This step- by- step process 
enables the clinician to formulate a set of hypothetical diagnostic pos-
sibilities, which can then be tested using iterative hypothesis testing. 
Iterative hypothesis testing allows the clinician to narrow the list of pos-
sible diagnoses and focus on the most plausible hypothesis.1–3

UNDERSTANDING PROBABILITY
Understanding probability is essential for good clinical decision- making.1–3 
Probability can be estimated for outcomes that are measured as contin-
uous or categorical variables, as shown in Figure 5.1. The figure shows 
how probability of an outcome or event is distributed across a range of 
possibilities. For example, a laboratory test might be measured in a pop-
ulation of patients resulting in a distribution in which most patients are 
distributed to the middle of the range of possibilities and fewer scatter 
to the edges of the range, shown in the probability density curve in the 
left panel of Figure 5.1. The probability of categories or discrete variables 
can also be measured, as shown in the probability distribution graph 
in the right panel of Figure 5.1. If all of the diagnostic possibilities are 
mutually exclusive and collectively exhaustive, the probability of all of the 
possibilities will add up to 1, as shown by the red cumulative probability 
curves in Figure 5.1. Understanding cumulative probability is important 
for understanding sensitivity and specificity, as discussed below.

To test a diagnostic hypothesis, clinicians use conditional probability, 
which is the probability that something will happen, on the condition 
that something else happened. Conditional probability can inform the 
probability of a diagnosis, on the condition of some new information 
such as a positive test result. Bayesian reasoning is a mental process 
that allows clinicians to modify their perceptions by considering prior 
knowledge and updating that knowledge with new and evolving evi-
dence. It enables formation of a probability estimate and revision of 
that estimate based on new information using conditional probability. 
For example, one might ask, what is the probability of coronary artery 
disease in a patient, given a positive stress echocardiogram? What is the 
probability of pulmonary embolus, given a negative D- dimer test? What 
is the probability of an acute coronary syndrome, given an abnormal 
troponin test? The post- test probability depends on a prior estimate of 
the probability for that particular patient, combined with the strength 
of the test result. Probability theory helps the clinician understand the 
question and calculate the answer.

Bayesian reasoning adds mathematical rigor to clinical thinking and 
requires both a prior estimate of probability and an estimate of the 
strength of a test result. Prior estimates can come from a clinician’s own 
experience, or published data on the prevalence of a disease. A classic 
paper by Diamond and Forrester provides estimates of the prevalence of 
coronary artery disease in patients depending on age, sex and symptom 
features, for example (see Classic References). This type of observational 
research can be used to provide the prior probabilities that are needed 
for Bayesian reasoning.

Understanding probability is essential to interpreting laboratory tests. 
A laboratory test might be measured in a population of presumably nor-
mal individuals to determine a distribution and to define a normal range, 
shown in the probability density curve in the left panel of Figure 5.2. A nor-
mal range is commonly defined as the inner 95% cumulative probability 
and the abnormal range is defined as values falling outside of the normal 
range as shown.

Another way of defining a test result is by measuring the test result 
in a group of subjects who are defined as normal and abnormal by 
another independent “gold standard” test, as shown in the right panel 
of Figure 5.2. Typically, subjects with and without disease will have test 
results that are distributed like bell- shaped curves. A line of demarcation 
can be drawn to define how a new test would separate patients with 
positive and negative test results. Because there is overlap in subjects 
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FIGURE 5.1 A probability density curve is shown in the left panel. The blue curve shows the probability of an event (left y-axis), across a range of possibilities (x-axis). A prob- 
ability distribution is shown in the right panel. The blue columns show the probabilities (left y-axis) of a variety of discrete possibilities (x-axis). In both panels, the cumulative
probability across the range of possibilities (x-axis) is shown by the red curves (right y-axis).
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with and without disease, there will be false-positive and false-negative 
test results, as shown.

Understanding how to use clinical testing is essential to good 
decision- making. The utility of a test result depends, in part, on the 
operating characteristics of a test, namely, the sensitivity and specificity. 
They are rates, meaning they are proportions with different units for the 
numerator and denominator. The terms “true positive rate” (TPR) for 
sensitivity and “true negative rate” (TNR) for specificity are alternative 
labels. Patients with and without disease are shown separately in Figure 
5.3 to show the cumulative probabilities of a true positive result (sensi-
tivity or the TPR) on the right and of a true negative result (specificity or 
the TNR) on the left. Sensitivity and specificity are usually shown in a 2 
× 2 table but showing the TPR and TNR in Figure 5.3 demonstrates how 
these rates vary, depending on the location of the line of demarcation 
between positive and negative test results.

The complementary probability of the TNR is the false-positive rate 
(FPR), as shown in the top panel of Figure 5.4. Plotting the TPR (sensitiv-
ity) of a test on the y- axis and the FPR (1- specificity) on the x- axis creates 
a plot called a receiver operating curve (ROC), as shown in the bottom 
panel of Figure 5.4. ROCs are useful for determining the optimal cutoff 
point for the line of demarcation of a test.

The denominators of sensitivity and specificity are patients with the 
disease and people without the disease, respectively. In clinical practice, 
when test results are reported as positive or negative, however, the results 
are reported using terms with different denominators. A clinician wants 
to know the probability that a positive test result is truly positive, or the 
positive predictive value (PPV), and also the probability of disease given a 
negative test result, which is 1 minus the negative predictive value (NPV). 
When changing from sensitivity and specificity to the PPV and NPV, the 
denominators of these rates change, making it difficult for a clinician 
to estimate these probabilities intuitively. In addition, the PPV and NPV 
depend not only on the sensitivity and specificity of the test, but also on 
the prevalence of the target condition in a population of test subjects.
The sensitivity and specificity are not fixed, and spectrum bias can result 
if the test subjects that defined the operating characteristics of the test 

are different from the subjects who are subsequently tested.2,3 If the 
operating characteristics of the test are defined in a narrowly defined 
population (left panel of Fig. 5.5), but the test is used in a broadly 
defined population and the line of demarcation remains fixed (right 
panel of Fig. 5.5), the specificity, or TNR, will decrease. This commonly 
occurs with tests such as troponin testing, where the clinical sensitivity 
and specificity of the test are defined in a research setting, but the test 
is used indiscriminately in practice. When used as a general screening 
test in a broadly defined population, the width of the distribution of the 
subjects with no disease widens, yet the line of demarcation remains 
fixed, which decreases the TNR, as shown. This issue has also been 
shown in genetic testing.10  
In practice, clinicians usually do not formally calculate Bayesian 

probabilities but, in general, use a heuristic that psychologists call 
“anchoring and adjusting.”3,6 Clinicians estimate a pretest probability 
(the anchor) and estimate the posttest probability by adjusting the 
anchor. For a patient with chest pain, for example, the anchor would be 
an estimate of the pretest probability of coronary artery disease, which 
would be intuitively adjusted on the basis of new information such as 
a stress test result to estimate a posttest probability. This is an expedient 
method for intuitively estimating conditional probability.

There are two potential problems when using this heuristic. One 
fallacy, called “anchoring,” is when the decision- maker becomes 
too anchored on the pre-test probability estimate and does not ade-
quately adjust in estimating the post-test probability. The second fal-
lacy is called “base- rate neglect,” when the decision maker overly 
responds to the new information to estimate a post-test probability, 
without regard for the pretest probability. For example, troponin tests 
may be positive because of renal failure or sepsis in patients with 
a low pretest probability of acute thrombotic myocardial infarction. 
Taking the test result at face value and initiating therapy such as anti-
thrombotic drug therapy in such a patient would be an example of 
base- rate neglect.
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FIGURE 5.2 Left panel shows how the normal range of a test result is defined as the inner 95th percentile of a presumably normal population. Right panel shows how a 
normal and abnormal test result is defined by the line of demarcation between distributions of normal and abnormal test subjects, as defined by another independent “gold 
standard” test.
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 FIGURE 5.3 Distributions of normal and abnormal test subjects are shown separately to demonstrate that the true negative rate (TNR, or specificity) is the cumulative probabil- 
ity of a negative test result (red curve) in a distribution of subjects without disease (blue curve, left panel) and the true positive rate (TPR, or sensitivity) is the cumulative probability
of a positive test result (red curve) in a distribution of subjects with disease (blue curve, right panel), depending on the location of the line of demarcation.
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Likelihood ratios are useful for Bayesian reasoning. The advantage of 
likelihood ratios is that, unlike sensitivity and specificity, they are dimen-
sionless numbers, so the need for keeping track of what is in the numer-
ator and denominator is alleviated. Likelihood ratios give a measure 
of the persuasiveness of a positive and negative test result, and can be 
used intuitively, or used to actually calculate posttest odds.

A likelihood ratio is defined as the percentage of patients with a disease 
who have a given test result divided by the percentage of patients without 
disease who have that same test result. Thus, a positive likelihood ratio is 
the percentage of patients with disease with a positive test result divided 
by the percentage of patients without disease with a positive test result 
(TPR/FPR, or sensitivity/[1 − specificity]). A negative likelihood ratio is the 
percentage of patients with disease with a negative test result divided by 
the percentage of patients without disease with a negative test result (FNR/
TNR, or [1 − sensitivity]/specificity). It is easy to calculate the positive and 
negative likelihood ratios from sensitivity and specificity. Once calculated, 
these numbers can be used to multiply the pretest odds to calculate the 
posttest odds of a diagnosis. They are multipliers, so a higher positive likeli-
hood ratio, and a lower negative likelihood ratio (which is a fraction) have 
stronger multiplying effects. A likelihood ratio that is close to 1 is weak 
because it would have very little multiplying effect, meaning it has little 
effect on the pre- test assessment.

Figure 5.6 shows how the probability estimate of a diagnosis can 
shift depending on a test result. After choosing a pre- test probability 
estimate on the x- axis, one can trace up to either the upper curve for 
a positive test result or the lower curve for a negative test result, then 
trace over to the y- axis to read the post- test probability estimate. The 
diagonal line shows that there would be no change in probability for 

a test with a likelihood ratio of 1. A higher positive likelihood ratio or 
a lower negative likelihood ratio would result in positive or negative 
test result curves with greater deviation from the diagonal line, repre-
senting a greater shift in the post- test probability estimate based on the 
test result.

Some tests are asymmetrical, meaning that either their positive or 
negative likelihood ratio is stronger. For example, Figure 5.7, Panel A 
shows the probability of congestive heart failure based on conges-
tion on a chest x- ray, which has a very strong positive likelihood ratio 
of 13.5 and a relatively weak negative likelihood ratio of 0.48.3 This 
reflects the fact that the chest x- ray is highly specific but not very 
sensitive for heart failure. In other words, congestive findings on a 
chest x- ray are highly suggestive of heart failure, but their absence is 
not strong reassurance about the lack of heart failure. Tests that are 
highly specific are better for ruling in a diagnosis and this can be 
remembered using the mnemonic “SpPin.” (Highly specific tests, if 
positive, are good for ruling in.)

On the other hand, Figure 5.7, Panel B shows that a D- dimer for pul-
monary embolus has a very strong negative likelihood ratio of 0.09 
and a modest positive likelihood ratio of 1.7.3 This reflects the fact 
that a D- dimer is highly sensitive but not very specific for a pulmo-
nary embolus. Tests that are highly sensitive are better for ruling out a 
diagnosis and this can be remembered using the mnemonic “SnNout.” 
(Highly sensitive tests, if negative, are good for ruling out.)

The likelihood ratios, however, are only as useful as the sensitivity 
and specificity that are used to calculate them. They give an approxi-
mate quantitative estimate of the strength of new information that pro-
vides a mechanism for calibrating intuitive probability estimates.
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TEST ORDERING STRATEGIES
Clinical reasoning should guide not only test interpretation, but also test 
ordering. Tests that are ordered for good reasons are more conclusive, 
and tests that are ordered indiscriminately can cause clinicians to make 
poor judgments. Ideally, a test should be used to validate or reject an 
articulated hypothesis—a plausible conjecture that is generated by a 
patient’s condition. Ideally clinicians think ahead about what they would 
do with test results.

To aid with test selection and avoid over- testing, the American 
College of Cardiology (ACC) and other organizations have developed 
appropriate use criteria to guide clinicians’ decisions about ordering 
selected cardiac tests.11 This effort is driven by both a need to avoid 
excessive false-positive test results and also the need to contain the 
costs of medical care. The goal of appropriate use guidelines is to 
reduce overuse errors and to maximize the value of diagnostic test-
ing and procedures. The general principle of any test- ordering strat-
egy is that a plausible hypothesis (a provisional diagnosis) should be 
formulated first, followed by testing. The appropriate use criteria are 
designed to avoid testing when the results are unlikely to improve 
patient care and outcomes. 

PREDICTING RISK
Recent ACC/American Heart Association (AHA) guidelines have pro-
moted the provision of preventive treatments according to an individu-
al’s risk of adverse outcomes.12 The premise is that low- risk people have 
little to gain by preventive interventions, while high- risk individuals may 
have a lot to gain. These guideline recommendations emphasize the 
need to consider categories based on estimates of risk and prognosis, 
rather than merely diagnostic labels, such as hyperlipidemia. It is import-
ant for clinicians to understand the provenance of the risk scores and 
their performance, including in diverse populations, to know whether 
the tools are useful. After calculating the risk, the challenge for clini-
cians is communicating risk to patients in an understandable fashion. 
Investigators have provided infographics that can communicate risk and 
risk reduction in order to facilitate a discussion regarding long- term 
treatment options to diminish risk, and to compare the degree of risk 
reduction with potential side effects and costs of treatment (see Fig. 
5.8). Because clinicians vary in their use of qualitative terms such as 
“high risk,” there is a need to provide clear and understandable quan-
titative estimates.13   

THERAPEUTIC DECISIONS
A preventive or therapeutic decision is a structured choice. These deci-
sions require medical knowledge and a balanced sense of risks and 
benefits, as well as knowledge of patients’ preferences, to make opti-
mal therapeutic decisions.

Clinical trials report the average risk of an outcome for patients in 
a treatment group and in a comparison group. There may be hetero-
geneity of the treatment effect, in which some patients may receive a 
marked benefit and others receive no benefit at all. Subgroup analysis 
and tests for interaction can provide hints, but usually heterogeneity 
of treatment effect is not readily apparent, creating a challenge for 
clinicians trying to personalize treatment decisions. In a key example 
of heterogeneity, fibrinolytic therapy was effective in the treatment of 
suspected AMI and subgroup analyses revealed the benefit to be sub-
stantial in patients with ST- elevation but not in those without it. The 
challenge is that subgroup analyses introduce the possibility that asso-
ciations have occurred only by chance. In the Second International 
Study of Infarct Survival (ISIS- 2), the authors provided perspective 
on subgroup analyses by demonstrating that patients born under the 
astrological signs of Gemini or Libra were significantly less likely to 
benefit from fibrinolytic therapy. Thus, subgroup analysis is capable of 
producing important insights, but must be interpreted with caution.14

A weakness of relative benefit estimates is that they do not convey 
information about what is achieved for patients at varying levels of risk. 
A small relative reduction in risk may be meaningful for a high- risk 
patient, while a large relative reduction may be inconsequential for a 
very low- risk patient. Absolute risk reduction, the difference between 
two rates, varies with the risk of an individual patient. For example, a 
risk ratio of 2.0 does not distinguish between baseline risks of 80% and 
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lower curve for a negative test result, then trace over to the y- axis to read the post- 
test probability estimate.
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40% and between 0.08% and 0.04%. In one case, the absolute difference 
is 50% (5000 per 10,000) and in the other, it is 0.05% (5 per 10,000). 
In one case, 1 person out of 2 benefits and in the other, 1 out of 2000 
benefits. Unfortunately, absolute benefit is not emphasized adequately 
in many articles.15

Risk prediction is critically important for calculating the expected 
absolute risk reduction. In recent years, many tools have been devel-
oped to assist in the rapid assessment of patient risk, with variable 
uncertainty about their comparative performance.15,16

In evaluating studies of risk prediction, it is important to consider 
whether the approach has been validated in populations similar to the 
patients to whom it is applied in practice. The predictors should be col-
lected independently of knowledge of the outcome. The outcome and 
timeframe should be appropriate for clinical decisions and the value 
of the prediction should be clear. Appropriate risk prediction can assist 
in calculation of absolute benefit and put the balance of risks and 
benefits of an intervention in proper perspective.

Several studies have shown a risk- treatment paradox in which the 
higher- risk patients are least likely to receive interventions that are 
expected to provide a benefit. This pattern is paradoxical because the 
high- risk patients would be expected to have the most to gain from 
an intervention that reduces risk, assuming that the relative reduction 
in risk is constant across groups defined by their baseline risk. The 
source of the paradox is not known, although some have suggested 
that it is related to an aversion to the treatment of patients with a lim-
ited functional status, or concern for greater degree of harm from the 
same therapy.

Cardiovascular drugs and procedures are often double- edged 
swords, having both benefit and harm. Also, patients may have strong 
preferences about potential benefit and harm. For example, a patient 
may have a strong fear of a side effect such as a cerebrovascular acci-
dent that may overwhelm other considerations about a treatment deci-
sion. It is important to engage patients and families in a discussion to 
explain the considerations that go into therapeutic decisions, particu-
larly for nuanced decisions about treatments that have substantial risks 
in addition to potential benefits.

Absolute risk reduction is better than relative risk reduction for esti-
mating a treatment effect. The inverse of the absolute risk reduction, 
which is a term called number needed to treat (NNT), is even more 
intuitive.3

Consider a trial with a combined event rate of 10% in the treat-
ment group and a 15% risk in the control group, giving an absolute 
risk reduction of 5%. This means that 5 events are avoided for every 
100 patients in the treatment group. The reciprocal of this relationship 
indicates that there would be 100 patients treated for every 5 events 
avoided. By dividing 100 by 5, which reduces the denominator to 1, 
there would be 20 patients treated per 1 event avoided. Thus, the NNT 
is 20. For NNT, the smaller the number, the better.

NNT and absolute risk reduction depend on both the relative risk 
reduction and the baseline risk. For conditions with a high baseline 
risk, the NNT can become very small (desirable). As an extreme exam-
ple, for a patient with ventricular fibrillation, the baseline risk of dying 
without defibrillation is 100%, making the NNT for defibrillation (if 
always effective) equal to 1.

Primary prevention with statin drugs has a relative risk reduction of 
about 20% over the several- year course of a typical prevention trial.17 
The absolute risk reduction and NNT depend upon the baseline risk, 
which varies depending on a number of factors. At a baseline risk of 
7.5%, the absolute risk reduction would be 1.5% and the NNT would be 
67, a fairly high number, which suggests marginal benefit at this level 
of baseline risk.

NNT is a useful intuitive tool for comparing the efficacy of various 
treatment strategies. NNT is also a useful way to summarize the find-
ings of a clinical trial in a single declarative sentence. For example, the 
PARTNER- 3 trial had an NNT of 16, meaning one would need to treat 
16 low- risk aortic stenosis patients with a transcatheter aortic valve 
replacement to prevent one composite endpoint of death, stroke, or 
rehospitalization over 1 year.18 The EMPEROR- Reduced trial had an 
NNT of 19, meaning one would need to treat 19 patients with class 
II to IV heart failure and an ejection fraction of ≤40% with a sodium- 
glucose cotransporter 2 (SGLT- 2) inhibitor for 16 months to prevent 
one death or hospitalization for worsening heart failure.19 With NNT, a 
single sentence can provide the trial name, the magnitude of the treat-
ment effect, the trial’s entry criteria, the study drug or intervention, the 
duration of the trial, and the outcome measure. NNTs of 16 and 19 sug-
gest that these treatments are strongly recommended, although some 
patients may not consider it worth going through the treatment if 15 of 
16 people have the same outcome regardless of whether they received 
the intervention.

NNT is also a very personal notion of the probability of a treatment 
effect. Imagine bringing 19 untreated patients with congestive heart 
failure and an ejection fraction of ≤40% into a room and saying, “If 
all of you start on an SGLT- 2 inhibitor, over the next 16 months, one of 
you will experience the benefit.” Capturing the essence of a treatment 
effect with NNT is a useful way to intuitively convey the impact of a 
treatment effect. This knowledge, packaged in a way that is more intu-
itive, can make it easier to combine this medical knowledge with the 
preferences and values of individual patients to make the best thera-
peutic decisions.

Nevertheless, there are limitations to NNT. NNT is an index of an aver-
age treatment effect over time and does not provide information about 
whether the treatment effect is immediate, delayed, or highly variable. 
NNT does not provide information about whether there is meaningful 
heterogeneity in effect among different subgroups, as the NNT often is 
calculated based on an assumption of a uniform effect of the therapy, 
with the NNT just varying based on the baseline risk. 

Among untreated people, 80 people out of 100 will
likely not develop an adverse cardiovascular outcome.

20 people out of 100 will likely develop an adverse
cardiovascular outcome.

Among patients treated with a statin drug, 84 people out of
100 will likely not develop an adverse cardiovascular outcome.

16 people out of 100 will likely develop an adverse
cardiovascular outcome.

FIGURE 5.8 Infographic showing a format for demonstrating risk and benefit to patients. The infographic shows a baseline risk of a cardiovascular endpoint in patients with 
a baseline risk of 20%, and the 20% relative risk reduction with statin therapy.
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DECIDING WHEN TO CHANGE CLINICAL 
PRACTICE BASED ON NEW CLINICAL 
RESEARCH FINDINGS
Science is a quantitative discipline that uses numbers to measure, ana-
lyze, and explain nature. Evidence- based medicine has been defined 
by David Sackett as “the conscientious, explicit, and judicious use of 
current best evidence in making decisions about the care of individ-
ual patients.” To practice evidence- based medicine, clinicians must 
remain vigilant, constantly monitoring for new research findings, 
accompanied by a basic knowledge of statistics to make proper infer-
ences from clinical research.

When using statistics to compare two groups, the standard method 
is to assume that there is no difference between the two groups, the 
so- called null hypothesis. The trial results are reported, along with a 
p value, which is the probability of deriving the difference reported 
in the trial, or a more extreme difference, given the assumption that 
the null hypothesis is true (i.e., there is no real difference between the 
groups). When a trial is designed, the investigators estimate the sam-
ple sizes that are required to avoid claiming that there is a difference 
between treatment groups when there really is no difference (a type I 
error or alpha error) or claiming that there is no differences between 
treatment groups when there really is one (a type II error or beta error). 
Similar to a clinical test like a stress test that can have false-positive and 
false-negative test results, clinical trials can have false-positive results 
(alpha errors) and false-negative results (beta errors). A trial with ade-
quate sample size and rigorous statistical methods should allow inves-
tigators to avoid these errors.

When a trial is designed, the alpha level is usually set at 0.05. If the 
p value of the observed data is less than 0.05, one can conclude that a 
very improbable event occurred, a less than 1- in- 20 event, assuming the 
null hypothesis is valid. According to the frequentist notion of statistics, 
one imagines that repeating a trial many times would create a distri-
bution of possible trial results. The p value tells us where the observed 
results of a particular trial would sit in that imaginary distribution of 
trial results.

Because the p value is so commonly used in clinical research, clini-
cians need to be aware of several key issues. First, the threshold of 0.05 
for statistical significance is arbitrary. A p value of 0.04 implies that the 
data could occur 4% of the time if the null hypothesis is true and a p 
value of 0.06 would suggest the data would occur 6% of the time. Is the 
difference between 6% and 4% enough to reject the null hypothesis in 
one case and accept it in another? Clinicians should understand that 
p values are continuous values and are just one piece of information 
needed to assess a trial. Second, p values do not inform clinical impor-
tance. A large study sample can produce a small p value despite a 
clinically inconsequential difference between groups. Clinicians need 
to examine the size of the effects in addition to the statistical tests of 
whether the results could have occurred by chance.

ENDPOINTS
In evaluating evidence, clinicians should be particularly attuned to the 
outcomes that are assessed. Ideally, interventions are assessed for their 
effect on a patient’s quality or quantity of life. Many studies use surro-
gate outcomes, measures that are more distally related to the patient 
experience but might be related to the likelihood that a patient’s qual-
ity or quantity of life will be affected. These surrogate outcomes often 
reflect information about a patient’s biology, and in epidemiologic stud-
ies, these outcomes may have prognostic value. However, it is not possi-
ble to know that an intervention that modifies a surrogate outcome has 
the expected effect on patients. There are many examples in medicine 
of changes in surrogate measures that did not translate into benefits 
for patients. 

NONINFERIORITY TRIALS
Most randomized trials are designed to show the superiority of a treat-
ment over placebo. However, some conditions already have treatments 
with proven benefit, making it unethical to design a trial that compares 
a new treatment with placebo. For example, for chronic atrial fibrilla-
tion, it was not possible to test newer oral anticoagulant drugs against 
a placebo arm that would have withheld the proven benefit of warfarin. 

For these situations, investigators use a noninferiority trial. The premise 
is to show that a given treatment is at least no worse than the stan-
dard of care by more than a predefined investigator- selected margin 
(the treatment could be slightly worse, or even be superior for efficacy). 
However, because the new treatment has other ancillary advantages 
(e.g., fewer side effects, better costs or tolerability), it could become a 
reasonable alternative to the previous standard of care. This trial design 
requires making assumptions about the margin of decreased efficacy 
that would be considered acceptable before considering using a new 
treatment rather than an established treatment with known efficacy. 
Noninferiority trials are also subject to several other biases that are not 
seen with typical superiority trials.20 

OBSERVATIONAL RESEARCH
There are other situations in which a randomized controlled trial is 
impossible, and observational studies such as case- control studies or 
longitudinal cohort studies are required. Randomized controlled trials 
have the advantage of a controlled experiment that eliminates poten-
tial biases but have the limitation of narrowly defining a study popula-
tion, which may affect generalizability. Observational studies have the 
advantage of observing large groups of unselected subjects in the real- 
world setting but have the disadvantage of potentially unrecognized 
and unmeasured sources of bias that could produce misleading study 
results. There is great heterogeneity in the quality of the data and meth-
ods used in observational research and there is a need to be discerning 
when evaluating observational research studies.21,22   

SHARED DECISION- MAKING
The principle of autonomy maintains that patients retain control over 
their bodies and must consent to undergo interventions, except in 
rare circumstances. Informed consent is the cornerstone of this con-
cept.23 Unfortunately, there is little consensus about how best to involve 
patients actively in decision- making. Nevertheless, given the need to 
align goals of therapy with the patient’s preferences and values, it is 
important to engage them as effectively as possible. This approach is 
most appropriate for major decisions, those with intermediate or low 
certainty, and those that are not emergent.

Informed consent is a critical part of medicine, but one that has 
many gaps. Documentation of informed consent suggests that physi-
cians often do not communicate in ways that address key topics nec-
essary for informed choice.24 It has been suggested, for example, that 
informed consent should be obtained with enough time before elec-
tive procedures for people to contemplate the decisions.25 The consent 
about procedures should contain an easy- to- understand description of 
the procedure, potential benefits, potential risks, alternative strategies, 
out- of- pocket costs, and the experience of the health care team in per-
forming the procedure.26

There are many aspects of communicating risks and benefits. First, 
this information takes many forms. The dimensions of risk and benefit 
include their identity, permanence, timing, probability, and value to an 
individual patient. All should be considered in decision- making. Unfor-
tunately, there is relatively little evidence to guide physicians about 
how best to convey risks to patients.

It is known that patients do not always understand benefit and risk 
well. Many studies of patients undergoing revascularization proce-
dures have shown that the patients can make assumptions about the 
survival benefits of cardiac procedures and patients often have a poor 
understanding of the potential for complications. There have been 
calls to improve medical education and medical reporting to address 
this problem of “risk illiteracy.”27

The manner in which information is presented may influence 
patients. Like physicians, patients are also susceptible to framing effects. 
Patients tend to be more likely to choose a therapy that is presented as 
having an advantage over an alternative in relative rather than absolute 
terms. The relative effect is almost always much greater than the abso-
lute change. Patients may also be influenced by the order in which 
information is provided.

Some techniques have been proposed to help clinicians convey 
risk.28 First, clinicians should avoid descriptive terms only because 
they may not have a consistent meaning to patients. Terms such as 
“low risk” may be difficult for people to interpret. If clinicians express 
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risk as ratios, they should use a consistent denominator (e.g., 40 out 
of 1000 and 5 out of 1000 instead of 1 in 25 and 1 in 200). Clinicians 
should offer multiple perspectives, revealing multiple ways of think-
ing about risk. They should use absolute numbers and natural fre-
quencies (e.g., 1 out of 20), not relative risks or percentages. Visual 
aids are useful, if available, as poor numeracy or literacy skills may 
be a barrier for many patients. Many patients do not understand risk 
communication formats. In addition, clinicians should recognize that 
information and data are not the same, and it is incumbent on the 
clinician to communicate health information that is meaningful to 
the patient.

Figure 5.8 shows a format for demonstrating risk and benefit to 
patients. The infographic shows a baseline risk of a cardiovascular end-
point in patients with a baseline risk of 20%, and the 20% relative risk 
reduction with statin therapy.17

Shared decision- making can be understood as having five phases: 
assess, advise, agree, assist, and arrange. First, the clinician must assess 
the patient. Then, the clinician should advise the patient of the options, 
with their benefits and risks. Next, the clinician and patient should 
agree on a plan that is aligned with the patient’s preferences and val-
ues. The clinician should then assist the patient in implementing the 
plan. Finally, the patient and clinician arrange follow- up.29,30

Clinical decision- making also involves other members of a cardio-
vascular team.31,32 The model of team- based care has now become 
standard practice, bringing Advanced Practice Practitioners (nurse 
practitioners, physician assistants, and clinical pharmacists) into 
the decision- making process for cardiovascular care. Good com-
munication and coordination, and the mantra of “shared goals and 
clear roles” are important to assure optimal team- based shared 
decision- making. 

MONITORING THE QUALITY OF CLINICAL 
DECISIONS
Getting the right care to the right patient at the right time every time 
requires good judgment. Learning the basic competencies of good 
judgment and step- by- step methods of clinical reasoning can help 
practitioners monitor the quality of their decisions. Knowledge about 
clinical reasoning is a structural attribute that can lead to more reli-
able processes and better clinical outcomes. Awareness of the logic, 
probability theory, and cognitive psychology of clinical reasoning can 
provide a theoretical foundation for better clinical practice.

Cognitive science provides justification for many of the good habits 
that are part of practice, such as consistently performing a standard-
ized history and physical examination and a conscious habit of listing 
a differential diagnosis. Cognitive psychologists emphasize that mea-
surement and feedback is a crucial process for the development of 
expert intuition, which is so often necessary for clinical decisions.

System 1 and System 2 Thinking
Cognitive psychologists describe two general thinking modes that peo-
ple use to make decisions: System 1 and System 2 thinking.6 System 1 
thinking is highly intuitive and fast, but prone to jumping to conclu-
sions. System 2 thinking is analytical and logical, but slow, effortful, 
and has difficulty with uncertainty. Used together, System 2 thinking 
provides a double check for System 1 thinking, and System 1 think-
ing provides a work- around when System 2 thinking is constrained by 
uncertainty. Cardiology decisions require both thinking modes, and 
expert clinicians are able to use a balance of intuition and analytical 
thinking to make optimal decisions. Calibrating intuitive thinking and 
organizing thinking by thoughtfully monitoring clinical decisions (so 
called “meta- cognition”) are key to good clinical practice.

Some psychologists describe three general types of fallacies: (1) 
hasty judgments, (2) biased judgments, and (3) distorted probability 
estimates.6 Hasty judgments occur when System 1 thinking is unmon-
itored. For example, premature closure of a diagnostic exercise, with-
out the use of a differential diagnosis, or becoming anchored on a 
diagnosis can lead to a misdiagnosis. Biased judgments occur when 

unconscious thoughts influence ideas, emotions, and actions. This can 
take the form of priming, stereotyping, overconfidence, risk aversion, or 
dread. Emotions can have a halo effect, influencing clinical thinking in 
imperceptible ways. Exaggerated fear of malpractice, financial incen-
tives, and conflict of interest can adversely affect decisions. Decision- 
makers tend to overweigh the probabilities of events or propositions at 
the extremes. At one end, clinicians can develop an illusion of certainty, 
which creates certainty about something that, objectively, is not certain 
at all. At the other extreme is the possibility effect, which creates the 
impression that highly improbable events or propositions are quite 
probable. Knowledge of these fallacies can help clinicians develop 
habits that will improve the quality of their clinical reasoning.

A recent Institute of Medicine report brought attention to the high 
prevalence of diagnostic error.33 Renewed interest has centered around 
defining diagnostic errors and measuring error rates.

A number of authors have suggested that diagnostic errors are due 
to cognitive biases.33,34 To avoid cognitive biases, the cognitive psy-
chologist Kahneman provides the following advice: “The way to block 
errors that originate in System 1 is simple in principle: recognize the 
signs that you are in a cognitive minefield and slow down, and ask 
for reinforcement from System 2.”6 Evans, another cognitive psychol-
ogist, counters this advice by stating, “perhaps the most persistent fal-
lacy in the perception of dual- process theories is the idea that Type 1 
processes (intuitive, heuristic) are responsible for all bad thinking and 
that Type 2 processes (reflective, analytic) necessarily lead to correct 
responses…So ingrained is this good- bad thinking idea that some dual 
process theories have built it into their core terminology.”35

In fact, a number of studies show that faster response times often 
lead to a correct diagnosis. One study showed that when test subjects 
were instructed to go slow and be more analytic, there was no effect on 
the accuracy of diagnosis.36

Some investigators have advocated teaching physicians a large 
number of potential biases and encouraging them to routinely “de- 
bias” their thinking in practice.34 However, studies that examined edu-
cational efforts to teach cognitive biases to medical trainees found that 
the instruction had no effect.37,38 One study showed that physicians 
were unable to agree on what bias contributed to a diagnostic error 
and the study subjects were themselves affected by hindsight bias.39

Norman and others have argued that diagnostic error is commonly 
due to knowledge deficits or inability to mobilize necessary knowl-
edge rather than flawed reasoning processes and biases.38 Using delib-
erate reflection to help mobilize the necessary knowledge, as well as 
the use of checklists have been shown to be beneficial for reducing 
diagnostic error.40 Improving diagnostic reasoning is an important goal 
and more research is needed to determine the most effective strategies 
for improvement.

Monitoring the quality of therapeutic decision- making is a broad 
topic and has been the focus of quality improvement efforts for decades. 
Explicit therapeutic decisions produce overt actions, and therefore can 
be easily monitored. Implicit bias, however, can have subtle effects on 
clinical decision- making, resulting in disparities in diagnosis, treatment, 
and outcomes. Implicit bias occurs when one’s judgment is affected 
by unconscious associations between a class such as race and learned 
cultural prejudices and stereotypes.41 Implicit bias related to race, sex, 
age, obesity, and other patient factors can unconsciously bias medical 
decisions. Conscious awareness of the problem through cultural com-
petency training is helpful but may not be sufficient to alleviate implicit 
bias. Investigators have suggested that articulating egalitarian goals, iden-
tifying common identities with the patient, counter- stereotyping, and 
trying to see things from the patient’s perspective are conscious mental 
strategies that can diminish implicit bias.42 

TEACHING CLINICAL REASONING
Clinical reasoning can be learned through experience and continu-
ously improved through deliberate practice and reflection. Although 
clinical reasoning can be learned, there are remaining questions about 
whether clinical reasoning can be formally taught through explicit 
instruction. Most teaching of clinical reasoning is through experience 
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5
in the setting of clinical rotations. Formal teaching of reasoning has 
been promoted for centuries, but Richard Nesbit and others have pos-
ited that teaching abstract rules of reasoning fell into disfavor in the 
20th century (see Classic References). The prevailing notion was that 
learners do not use abstract reasoning rules, but rather use domain- 
specific empirical rules that are better learned by experience, not 
instruction. There is evidence, however, that statistical heuristics, prag-
matic inferential rules, and metacognitive strategies can be taught even 
with brief formal training.43

A recent study examined whether Bayesian reasoning can be 
taught.44 The study showed a modest advantage for medical students 
randomized to receive theoretical instruction on concepts of Bayes-
ian reasoning, suggesting that a conceptual framework can modestly 
improve clinical decision- making.45

Clinical reasoning is not a specific problem- solving skill that easily 
transfers from problem to problem, but rather is dependent on learned 
habits and a conceptual framework that enable the clinician to access, 
organize, and use both experiential knowledge and formal knowledge 
to address a clinical problem. Interleaving instruction on concepts of 
reasoning throughout training may strengthen the associations and 
provide a scaffolding for experiential knowledge to help learners 
make the most of their experience, calibrate their intuitive judgments, 
and become better at clinical reasoning. 

CONCLUSION
Reliable decision- making is fundamentally important for high- quality, 
patient- centered medical care. Clinical decisions in cardiology are 
often time- sensitive, complex, and uncertain, demanding good clinical 
reasoning. Logic, probability theory, and cognitive science can provide 
a framework for good clinical reasoning. The ability to read, under-
stand, and critique the literature is also essential. Knowledge of the 
components of clinical reasoning is crucial for clinical practice, for 
team- based care, and for shared decision- making. The ability to reason 
and the ability to use reasoning to stay current and monitor one’s per-
formance are the essence of professionalism. Ensuring that the patient 
is a participant and is part of all decisions is also essential. Integrating 
scientific knowledge and calibrated intuition with a patient’s personal 
preferences and values can provide the highest quality of care.
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