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 10 Biomarkers and Use in Precision 
Medicine
PETER LIBBY AND PAUL M RIDKER

Clinicians use biomarkers daily in the practice of cardiovascular 
medicine. Moreover, the use of biomarkers can continue to improve 
physicians’ ability to provide clinically effective and cost- effective car-
diovascular medicine in the years ahead. Appropriate risk stratification 
and targeting of therapies should not only help improve patient out-
comes but also assist in responding to the urgent need to “bend the 
cost curve” of medical care. In particular, excessive use of imaging bio-
markers increases the cost of medical care and can jeopardize patient 
outcomes (e.g., from radiation exposure or complications of adminis-
tering contrast material or investigating incidental findings). Inappro-
priate use or interpretation of blood biomarkers (e.g., cardiac troponin 
levels) can lead to unnecessary hospitalization or procedures as well.

Despite the current usefulness of biomarkers, their future promise, 
and the critical need to use them appropriately, much misunderstand-
ing still surrounds their current clinical application.1 In addition, con-
temporary technologies can greatly expand the gamut of biomarkers 
relevant to cardiovascular practice. Emerging genetic, proteomic, 
metabolomic, and molecular imaging strategies will surely transform 
the landscape of cardiovascular biomarkers (see also Chapters 7, 8, 
and 25).

This chapter provides a primer on cardiovascular biomarkers by 
defining terms and discussing how the application of biomarkers can 
assist in clinical care. The literature abounds with descriptions of bio-
markers offered to apply to various clinical situations. Advances in car-
diovascular biology and the application of novel technologies have 
identified a plethora of novel cardiovascular biomarkers of potential 
clinical usefulness—begging the question of whether a novel bio-
marker adds value to existing and often better- validated biomarkers. 
Thus clinicians need tools to evaluate these emerging biomarkers, 
to discern which may actually elevate clinical practice and improve 
patient outcomes. To help the reader in this regard, we also provide a 
guide to the rigorous evaluation of the clinical utility of biomarkers. 
Chapter 8 explicates the application of proteomics and metabolomics 
to discover novel biomarkers.

OVERVIEW OF BIOMARKERS
For regulatory purposes, the U.S. Food and Drug Administration (FDA) 
first defined a biomarker in 1992 as “a laboratory measure or physi-
cal sign that is used in therapeutic trials as a substitute for a clinically 
meaningful end point that is a direct measure of how a patient feels, 
functions, or survives and is expected to predict the effect of the ther-
apy.” At that time the FDA considered a surrogate endpoint as “reason-
ably likely, based on epidemiologic, therapeutic, pathophysiologic, or 
other evidence, to predict clinical benefit.” The National Institutes of 

Health (NIH) convened a working group in 1998 that offered some par-
allel operating definitions to guide the biomarker field (Table 10.1).2 
NIH defined a biologic marker, or biomarker, as “a characteristic that 
is objectively measured and evaluated as an indicator of normal bio-
logic processes, pathogenic processes, or pharmacologic responses 
to a therapeutic intervention.” Thus the NIH definition includes not 
only soluble biomarkers in circulating blood but also “bedside bio-
markers,” such as anthropomorphic variables obtainable with a blood 
pressure cuff or a tape measure at the point of care.

This broad definition encompasses measurements of biomarkers in 
blood (Fig. 10.1A) as well as measurements from imaging studies (Fig. 
10.1B). Imaging biomarkers can include those derived from classic 
anatomic approaches. Imaging modalities now offer functional infor-
mation, such as estimates of ventricular function and myocardial perfu-
sion. Molecular imaging has the potential to target specific molecular 
processes. A functional classification of biomarkers helps sort through 
the plethora encountered by the clinician, in that biomarkers can 
reflect a variety of biologic processes or organs of origin. For exam-
ple, as shown in Figure 10.1B, to a first approximation, cardiac tropo-
nin reflects myocardial injury, brain natriuretic peptide reflects cardiac 
chamber stretch, C- reactive protein reflects inflammation, and cystatin 
C and the estimated glomerular filtration rate reflect kidney function.

The NIH working group defined a surrogate endpoint as “a biomarker 
intended to substitute for a clinical endpoint. A surrogate endpoint is 
expected to predict clinical benefit (or harm) or lack of benefit (or 
harm) based on epidemiologic, therapeutic, pathophysiologic, or other 
scientific evidence.” (Note that the NIH definitions do not include the 
commonly used term surrogate marker.) Thus a surrogate endpoint is a 
biomarker that has been “elevated” to surrogate status. This distinction 
has particular importance in the regulatory aspects of cardiovascular 
medicine. For example, the FDA previously accepted a certain degree of 
reduction in hemoglobin A1c (HbA1c) as a criterion for registration of a 
novel oral hypoglycemic agent; thus HbA1c was considered a biomarker 
accepted as a surrogate endpoint. Current FDA guidance now requires a 
cardiovascular safety study for the registration of new medications that 
target diabetes. This policy indicates regulatory doubts about the fidelity 
of a decrease in HbA1c as a surrogate endpoint for reduced cardiovascu-
lar risk, despite its value as a biomarker of glycemia.

The NIH working group defined a clinical endpoint as “a character-
istic or variable that reflects how a patient feels, functions, or survives.” 
Pivotal or phase III cardiovascular trials aspire to use clinical endpoints 
so defined. The distinction among biomarkers, surrogate endpoints, 
and clinical endpoints has crucial implications as practitioners, regu-
lators, and payers increasingly demand evidence of improvements in 
actual clinical outcomes rather than mere manipulation of biomarkers 
as a criterion for adoption of a treatment in clinical practice.
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In an effort to dispel persistent confusion regarding definitions in 

the biomarker arena, in 2015 a joint effort of the FDA and NIH devel-
oped an online resource denoted BEST (Biomarkers, EndpointS, and 
other Tools).3 They formulated a living online resource that furnishes 
an extended glossary of terms to facilitate standardization (Table 10.2). 
The BEST definitions overlap with those of the NIH Workshop, but pro-
vide more detail of particular relevance to those interested in the reg-
ulatory aspects of biomarkers (Table 10.3).

Clinical Applications of Cardiovascular 
Biomarkers (see also Chapter 5)
Much of the prevailing confusion regarding biomarkers involves fram-
ing the question that the clinician wants to answer with the use of a 
biomarker (Fig. 10.1C). We can classify the goals of application of car-
diovascular biomarkers into the following rubrics:
 1.  Diagnosis. Daily medical practice uses many biomarkers for cardio-

vascular diagnosis. The current universal definition of myocardial 
infarction, for example, requires elevation of a biomarker of myocyte 
injury, such as cardiac- specific isoforms of troponin.

 2.  Risk stratification. Familiar examples of biomarkers used in risk strat-
ification in cardiovascular medicine include systolic blood pressure 
(SBP) and low- density lipoprotein cholesterol (LDL- C). These bio-
markers reliably predict future risk for cardiovascular events on a 
population basis.

 3.  Goals for therapy. Contemporary guidelines often specify cutoff 
points for targets of treatment, for example, a specific level of a bio-
marker (e.g., SBP, LDL- C) in a particular group of individuals. Prac-
titioners of cardiovascular medicine typically use the biomarker 

international normalized ratio (INR) to titrate the dosage of war-
farin administered to an individual patient. Abundant data support 
the clinical benefit of maintaining the INR within a certain range in 
various patient groups, an example of a widely used biomarker that 
has proven clinical usefulness as a goal for therapy.

 4.  Targeting of therapy. In clinical practice, using biomarkers to target 
therapy has great usefulness and promise as we move toward a 
more comprehensive “personalized medicine” approach to prac-
tice. Examples of biomarkers used to target therapy include tropo-
nin measurements to triage patients with acute coronary syndromes 
for early invasive management and measurement of high- sensitivity 
C- reactive protein (hsCRP) to allocate statin treatment to individuals 
without elevated LDL- C.

 5.  Drug development, evaluation, and registration. Biomarkers have crit-
ical importance in the development of new pharmacologic agents. 
Biomarkers can provide early signals of efficacy that will help pri-
oritize agents more likely to provide benefit on clinical endpoints 
in large- scale trials. Clinical trials not infrequently fail because of 
inappropriate dose selection. Judicious use of biomarkers can help 
in selecting an appropriate dose of an agent to study in a large 
endpoint trial. Biomarkers accepted as surrogate endpoints also 
prove useful to regulatory agencies in granting approval for novel 
therapies.
Clinical use of cardiovascular biomarkers requires a clear under-

standing of how they should be used. Many biomarkers provide 

Clinical Purpose Technology

Biomarkers Biomarkers Biomarkers

Lipids
LDL, TG, HDL

Cardiac chamber
stress
BNP

Renal function
Cystatin C

Inflammation
hsCRP

Myocardial
injury

Cardiac troponins

Surrogate endpoint
Clinical relevance
FDA acceptance

Monitoring therapy
Toxicity evaluation

Dose ranging

Disease monitoring
Goal of therapy

Risk predication/
assessment

Predictive medicine
Disease prevention
Genomic/Proteomic

Pathophysiologic
tool

Define/discover
new targets

Markers of pathophysiologic
processes

Therapeutic targeting
Gene-drug interaction

Protein-drug interactions

Image based

Behavior basedPhysiologic based

Cell based Proteomic based

Genetic based 

A B C

  
   

TABLE 10.2 Biomarker Categories According to the FDA- NIH 
BEST Resource

Diagnostic biomarker

Monitoring biomarker

Pharmacodynamic/response biomarker

Predictive biomarker

Prognostic biomarker

Reasonably likely surrogate endpoint

Safety biomarker

Susceptibility/risk biomarker

Understanding prognostic versus predictive biomarkers

Validated surrogate endpoint

From the BEST (Biomarkers, EndpointS, and other Tools) Online Resource 
https://pubmed.ncbi.nlm.nih.gov/27010052/

TABLE 10.1 Biomarker Definitions (NIH Working Group)

Biologic marker (biomarker) A characteristic that is objectively measured 
and evaluated as an indicator of normal biologic processes, pathogenic 
processes, or pharmacologic responses to a therapeutic intervention.

Surrogate endpoint A biomarker intended to substitute for a clinical 
endpoint. A surrogate endpoint is expected to predict clinical benefit (or 
harm) or lack of benefit (or harm) based on epidemiologic, therapeutic, 
pathophysiologic, or other scientific evidence.

Clinical endpoint A characteristic or variable that reflects how a patient 
feels, functions, or survives.

From National Institutes of Health (NIH) Biomarkers Definition Working Group, 1998.

FIGURE 10.1 Examples of commonly used clinical biomarkers for cardiovascular disease (A), as well as research-oriented biomarkers categorized according to purpose (B) and
technology (C). BNP, Brain natriuretic peptide; hsCRP, high-sensitivity C-reactive protein; TG, triglyceride.
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clinically useful information when measured once at “baseline.” A 
baseline measurement of high- density lipoprotein cholesterol (HDL- 
C), for example, correlates inversely with future risk for cardiovascu-
lar events. However, serial measurement of biomarkers to document 
a change does not always guarantee a clinical benefit. In the case of 
HDL- C, recent large- scale trials that have measured clinical endpoints 
have cast doubt on the fidelity of a rise in HDL- C as a predictor of clin-
ical benefit (see Chapter 27). A single measurement of coronary artery 
calcium score (CAC) ably predicts future events in statin naïve individ-
uals. Yet, serial measurements of CAC may prove misleading because 
statin therapy increases calcification, but decreases coronary events.

Biomarkers require rigorous validation before adoption into clini-
cal practice. In cardiovascular medicine, LDL- C has high reliability as 
a biomarker; it satisfies the modified Koch postulates. LDL levels pro-
spectively predict cardiovascular risk, and decreases in LDL generally 
correlate with improved outcomes. Not all biomarkers, however, have 
proved as faithful in predicting clinical events. In the 1960s and 1970s, 
for example, most of the cardiovascular community considered ven-
tricular premature depolarizations on the electrocardiogram (ECG) as 
important biomarkers for lethal arrhythmias. Numerous strategies have 
been aimed at suppressing ventricular ectopy. The Cardiac Arrhyth-
mia Suppression Trial (CAST), however, showed that drugs capable of 
suppressing ventricular premature depolarizations actually worsened 
survival. The short- term improvements in indices of cardiac contrac-
tility produced by inotropic agents similarly led to worsened clinical 
outcomes, including increased mortality. These examples illustrate the 
necessity of rigorous validation of biomarkers before adoption into 
clinical practice.

Another important consideration in the use of cardiovascular bio-
markers involves the question of causality. LDL- C exemplifies a causal 
biomarker, one that clearly participates in the pathogenesis of athero-
sclerosis.4 Its levels prospectively correlate with risk for cardiovascular 
events and the development of atherosclerotic lesions identified by 
a variety of imaging modalities. A variety of independent manipula-
tions of LDL- C levels correlate with clinical outcomes. In addition, very 
strong genetic evidence based on mendelian disorders (e.g., familial 
hypercholesterolemia) and unbiased genome- wide association scans, 
as well as mendelian randomization analyses, have established LDL- C 
as a causal risk factor in atherosclerotic cardiovascular disease and 
as a generally valid surrogate endpoint offering great value in clini-
cal practice (see Chapter 27). Even a well- validated causal biomarker 
such as LDL- C, however, may mislead under some circumstances. For 
example, lowering of LDL- C with certain cholesteryl ester transfer pro-
tein inhibitors does not appear to lead to clinical benefit.5,6 Other lipid 
measures such as plasma triglycerides and lipoprotein(a) predict risk, 
but currently lack definitive evidence that intervention reduces that 
risk. Ongoing trials of triglyceride reduction7 and of lipoprotein(a) 
reduction8 may move these relationships from casual to causal.

Other biomarkers, although clearly clinically useful, do not partici-
pate in the causal pathway for disease. For example, fever has served 

since antiquity as an important biomarker of infection. Resolution 
of fever correlates with successful resolution of infectious processes. 
However, fever does not participate causally in the pathogenesis of 
infection but merely serves as a biomarker of the host defenses against 
the infectious process. Sometimes a non- causal downstream biomarker 
can serve as an effective clinical surrogate for an upstream causal bio-
marker. For example, the use of hsCRP measurements improves the 
prediction of cardiovascular risk, and reductions in CRP correlate with 
clinical benefit in many cases. However, mendelian randomization 
studies do not support a causal role for CRP itself in the pathogenesis 
of cardiovascular disease. By contrast, intervention trials demonstrate 
that upstream drivers of CRP, in particular IL- 1b, are indeed in the causal 
pathway leading to myocardial infarction, stroke, and cardiovascular 
events.9

These examples illustrate how a biomarker does not need to reside 
in the causal pathway of a disease to have clinical usefulness. A clear 
and early exposition of the uses and pitfalls in the application of bio-
markers emerged from the landmark schema of Fleming and DeMets 
(Fig. 10.2). Biomarkers have the greatest potential for validity when 
there is one causal pathway and when the effect of intervention on 
true clinical outcomes is mediated directly through the biomarker sur-
rogate (Fig. 10.2A). However, biomarker development can fail when the 
biomarker is found not to be in the causal pathway, when the biomarker 
is insensitive to the specific intervention’s effect, or when the interven-
tion of interest has a mechanism of action (or a toxicity) that does not 
involve the pathway described by the biomarker (Fig. 10.2B- E). These 
examples do not mean that biomarkers lack value; few if any novel 
biologic fields could develop without biomarker discovery and vali-
dation. Still, surrogate endpoints probably will not replace large- scale 

TABLE 10.3 Selected Biomarker Definitions from the BEST 
Glossary

Biologic marker (biomarker): A defined characteristic that is measured 
as an indicator of normal biological processes, pathogenic processes, 
or responses to an exposure or intervention, including therapeutic 
interventions. Molecular, histologic, radiographic, or physiologic 
characteristics are types of biomarkers. A biomarker is not an assessment 
of how an individual feels, functions, or survives.

Surrogate endpoint: An endpoint that is used in clinical trials as a substitute 
for a direct measure of how a patient feels, functions, or survives. A 
surrogate endpoint does not measure the clinical benefit of primary interest 
in and of itself, but rather is expected to predict that clinical benefit or 
harm based on epidemiologic, therapeutic, pathophysiologic, or other 
scientific evidence. From a U.S. regulatory standpoint, surrogate endpoints 
and potential surrogate endpoints can be characterized by the level of 
clinical validation: validated surrogate endpoint, reasonably likely surrogate 
endpoint, candidate surrogate endpoint.

From the BEST (Biomarkers, EndpointS, and other Tools) Online Resource 
https://pubmed.ncbi.nlm.nih.gov/27010052/

TIME

A

B

C

D

E

Disease

Disease

Disease

Disease

Disease

Intervention

Intervention

Intervention

Intervention

Surrogate
endpoint

Surrogate
endpoint

Surrogate
endpoint

Surrogate
endpoint

Surrogate
endpoint

True clinical
outcome

True clinical
outcome

True clinical
outcome

True clinical
outcome

True clinical
outcome

FIGURE 10.2 Biomarkers as surrogate endpoints in clinical research. A, The setting 
that provides the greatest potential for the surrogate endpoint to be valid. B, The 
surrogate is not in the causal pathway of the disease process. C, Of several causal 
pathways of disease, the intervention affects only the pathway mediated through the 
surrogate. D, The surrogate is not in the pathway of the intervention’s effect or is 
insensitive to its effect. E, The intervention has mechanisms of action independent of 
the disease process. Dotted lines represent possible mechanisms of action. (Modified 
from Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being 
misled? Ann Intern Med. 1996;125:605.)
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randomized trials that address whether interventions reduce actual 
event rates. 

Novel Technologies in Biomarker Identification
The limitations of currently available biomarkers for screening or prog-
nostic use underscore the importance of identifying “uncorrelated” or 
“orthogonal” biomarkers associated with novel disease pathways (see 
Fig. 10.1A). Most current biomarkers have been developed as an exten-
sion of targeted physiologic studies investigating known pathways 
such as tissue injury, inflammation, or hemostasis. By contrast, emerging 
technologies now enable the systematic, unbiased characterization of 
variation in proteins and metabolites associated with disease condi-
tions (see Chapter 8). The rapid development of polygenic risk scores 
for cardiovascular disease promises to provide biomarkers that may 
permit the targeting of therapies particularly in primordial and primary 
prevention before pathological processes have progressed to the point 
of altering disease biomarkers (see Chapter 7.)10–13 The applications 
of machine learning and artificial intelligence (see Chapter 11) will 
doubtless add to the development of novel candidate biomarkers that 
will require rigorous evaluation for clinical utility as outlined below. 
The burgeoning field of wearables will provide new inputs into bio-
marker science as well (see Chapter 12). The development of point- 
of- care technologies will likewise facilitate the clinical application of 
biomarkers by rendering their use more practical in the field and in 
urgent situations.14 Digital technologies, for example, smart phone apps 
and implanted sensors, will also provide “real world” biomarker input 
outside of the confines of the traditional medical enterprise. 

CLINICAL MEASURES OF BIOMARKER 
PERFORMANCE
When considering any biomarker in a clinical setting for risk predic-
tion, physicians should ask two interrelated questions:
	•  Is there clear evidence that the biomarker of interest predicts future 

cardiovascular events independent of other already measured 
biomarkers?

	•  Is there clear evidence that patients identified by the biomarker of 
interest will benefit from a therapy that they otherwise would not 
have received?
Unless the answer to both these questions is a clear “yes,” mea-

surement of the biomarker will not likely have sufficient usefulness to 
justify its cost or unintended consequences. Such judgments require 
clinical expertise and will vary on a case- by- case basis.

Biomarker evaluation also typically involves repeated testing in 
multiple settings that include varied patient populations and that use 
different epidemiologic designs. Prospective cohort studies (in which 
the biomarker or exposure of interest is measured at baseline, when 
individuals are healthy, and then related to the future development 
of disease) provide a much stronger form of epidemiologic evidence 

than do data from retrospective case- control studies (in which the bio-
marker of interest is measured after the disease is present in the case 
participants).

After discovery by the technologies described earlier or identifi-
cation by a candidate approach, a novel biomarker typically requires 
development in a translational laboratory for refinement of its assay 
to address issues of interassay and intra- assay variation before any 
clinical testing begins. Focused studies in specific patient populations 
typically follow and eventually broaden to encompass the population 
of greatest clinical interest. Beyond simple reproducibility, biomarkers 
under development for diagnostic, screening, or predictive purposes 
require further evaluation with a standard set of performance mea-
sures that include sensitivity, specificity, positive and negative predictive 
value (NPV), discrimination, calibration, reclassification, and tests for 
external validity.

Sensitivity, Specificity, and Positive and 
Negative Predictive Value
The validity of a screening or diagnostic test (or one used for predic-
tion) is initially measured by its ability to categorize individuals who 
have preclinical disease correctly as “test positive” and those without 
preclinical disease as “test negative.” A simple two- by- two table is typ-
ically used to summarize the results of a screening test by dividing 
those screened into four distinct groups (Table 10.4). In this context, 
sensitivity and specificity provide fundamental measures of the test’s 
clinical validity. Sensitivity is the probability of testing positive when the 
disease is truly present and is defined mathematically as a/(a + c). As 
sensitivity increases, the number of individuals with disease who are 
missed by the test decreases, so a test with perfect sensitivity will detect 
all individuals with disease correctly. In practice, tests with ever- higher 
sensitivity tend to also classify as “diseased” many individuals who are 
not actually affected (false positives). Thus the specificity of a test is the 
probability of screening negative if the disease is truly absent and is 
defined mathematically as d/(b + d). A test with high specificity will 
rarely be positive when disease is absent and will therefore lead to a 
lower proportion of individuals without disease being incorrectly clas-
sified as test positive (false positives). A simple way to remember these 
differences is that sensitivity is “positive in disease,” whereas specificity 
is “negative in health.”

A perfect test has both very high sensitivity and specificity and thus 
low false- positive and false- negative classifications. Such test charac-
teristics are rare, however, because there is a trade- off between sensi-
tivity and specificity for almost every screening biomarker, diagnostic, 
or predictive test in common clinical use. For example, although high 
LDL- C levels usually serve as a biomarker for atherosclerotic risk, up 
to half of all incident cardiovascular events occur in those with LDL- C 
levels well within the normal range, and many events occur even when 
levels are low. If the diagnostic cutoff criterion for LDL- C is reduced so  
that more people who actually have high risk for disease will test pos-
itive (i.e., increased sensitivity), an immediate consequence of this  

TABLE 10.4 Summarizing the Results of Screening, Diagnostic, or Predictive Tests

DISEASE PRESENT DISEASE ABSENT

Test positive a b a + b

Test negative c d c + d

Total a + c b + d

Sensitivity = a/(a + c)

Specificity = d/(b + d)

Positive predictive value = a (a + b)

Negative predictive value = d/(c + d)

a = Number of individuals for whom the screening test is positive and the individual actually has the disease (true positives).
b = Number of individuals for whom the test is positive but the individual does not have the disease (false positives).
c = Number of individuals for whom the test is negative but the individual actually has the disease (false negatives).
d = Number of individuals for whom the test is negative and the individual does not have the disease (true negatives).
Modified from Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.
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change will be an increase in the number of people without disease 
in whom the diagnosis is made incorrectly (i.e., reduced specificity). 
Conversely, if the criterion for diagnosis or prediction is made more 
stringent, a greater proportion of those who test negative will actually 
not have the disease (i.e., improved specificity), but a larger proportion 
of true cases will be missed (i.e., reduced sensitivity).

In addition to sensitivity and specificity, the performance or yield of 
a screening, diagnostic, or predictive test also varies depending on the 
characteristics of the population being evaluated. Positive and NPVs 
are terms used in epidemiology that refer to measurement of whether 
an individual actually has (or does not have) a disease, contingent on 
the result of the screening test itself.

The positive predictive value (PPV) is the probability that a person 
has the disease of interest, given that the individual tests positive, and is 
mathematically calculated as PPV = a/(a + b). High PPV can be antic-
ipated when the disease is common in the population being tested. 
Conversely, the NPV is the probability that an individual is truly disease 
free, provided that the test has a negative result, and is mathematically 
calculated as NPV = d/(c + d). High NPV can be anticipated when the 
disease is rare in the population being tested. Although sensitivity and 
specificity are largely performance characteristics of the test itself (and 
thus tend to be fixed values), PPV and NPV depend in part on the pop-
ulation being tested (and thus tend to vary). 

Discrimination, C- Statistics, and Receiver 
Operating Characteristic Curve
Discrimination is the ability of a test (or prognostic model) to separate 
those with disease or at high risk for disease (cases) from those without 
disease or at low risk for disease (controls).  The most common method 
used to measure discrimination has been the area under the receiver 
operating characteristic (ROC) curve (AUC), which relates sensitivity (on 
the y axis) to (1 − specificity) (on the x axis) across a full range of cutoff 
values for the test or screening algorithm of interest (Fig. 10.3).

Given a population of individuals being evaluated, the area under 
the ROC curve, also called the C- statistic, equals the probability of 
correctly ranking risk for individuals by using the test or model under 
evaluation. A random test with no clinical usefulness would have a 
C- statistic (ROC AUC) of 0.5, which corresponds to the diagonal line 
in Figure 10.3.  A perfect test that completely discriminates individuals 
with disease from those without disease would have a C- statistic that 
approaches 1.0. As the C- statistic increases from 0.5 to 1.0, model fit (or 
test accuracy) improves; thus the change in the C- statistic has served 

historically to judge whether a new biomarker can “add” significantly 
to those already in use. This approach permits direct comparison of 
the relative efficiency of multimarker panels. For example, using com-
parative C- statistic analyses, investigators in the Emerging Risk Factors 
Collaboration recently found that the incremental clinical useful-
ness of CRP has similar magnitude as that of total and HDL- C. Thus 
when change in the C- statistic can be demonstrated and the overall 
power to do so is adequate, this test can assist in understanding the 
impact of novel pathways and novel risk biomarkers on prediction and 
prevention.

Unfortunately, the traditional C- statistic approach is limited in that 
biomarkers with large associations may have minimal effect on ROC 
AUC. For example, a predictor (or set of predictors) would need an 
odds ratio (OR) as high as 16 (>2 standard deviations [SD]) to lead to 
a substantial increase in the C- statistic. Almost no test in common use 
for risk prediction or prognostication in cardiovascular medicine has 
an OR in this range; high cholesterol, smoking, high blood pressure, and 
diabetes yield an OR of less than 2 and thus have negligible individual 
impact on ROC AUC. Consequently, sole reliance on the C- statistic as a 
method for developing and evaluating new biomarkers, at least in the 
setting of risk prediction, is insufficient. 

Accuracy and Calibration
Discrimination is only one measure of model accuracy. The other 
important measure is calibration, or the ability of a predictive model 
to assign risk estimates accurately compared with the actual observed 
risk in the population being tested. Unlike discrimination, which is 
based solely on relative rankings of risk, calibration compares the risk 
predicted from a model or test with that actually observed.

For binary outcomes (e.g., disease or no disease), calibration is often 
evaluated with the Hosmer- Lemeshow test, which places individuals 
within categories of estimated risk by using the test biomarker or mul-
tivariable model and compares these estimates with the proportions 
actually observed. These “predicted” and “observed” probabilities can 
be compared with standard goodness- of- fit tests across categories of 
risk (e.g., across estimated quintiles or estimated deciles of risk). Cali-
bration becomes particularly important when addressing a biomarker 
in different populations from the population in whom it was originally 
developed. A biomarker may calibrate well in men but not in women, 
or among whites but not among blacks. This consideration also applies 
to multimarker panels, such as the Framingham Risk Score, which cal-
ibrates well in whites but less well in other population groups. Newer 
risk models such as the Reynolds Risk Score show improved calibra-
tion, as well as discrimination, compared with the traditional Framing-
ham model. 

Risk Reclassification
To address the shortcoming of biomarker validation via the C- statis-
tic alone, contemporary biomarker development programs for risk 
prediction now use a series of “reclassification statistics,” as initially 
developed by Cook and Ridker and refined by Pencina and Xanthakis 
and associates. Rather than addressing whether a new biomarker of 
interest adds to ROC AUC, reclassification addresses whether the bio-
marker can shift overall risk estimates upward or downward in a clin-
ically meaningful way. Specifically, reclassification methods compare 
risk strata formed from prediction models with and without the new 
biomarker of interest and then determine which model leads to the 
most accurate classification of risk. Risk reclassification is particularly 
useful when actionable and clinically relevant risk categories already 
exist. For example, in primary cardiovascular prevention, 10- year esti-
mated risk is often categorized as being less than 5%, 5% to 10%, 10% to 
20%, or greater than 20%, and those above or below these cut points are 
frequently targeted for interventions such as aspirin and statin therapy. 
Thus a biomarker that reclassifies a proportion of individuals upward 
(or downward) might well be highly effective for targeting (or avoid-
ing) drug therapy, even if the overall effect on discrimination is modest.

Mere reclassification of an individual by a given biomarker does not 
provide sufficient evidence to support clinical use. Rather, an effective 

C= 0.5

C= 0.6

C= 0.7

C= 0.8

C= 0.9

0 0.5 1.0

S
E

N
S

IT
IV

IT
Y

1– SPECIFICITY

1.0

0.5

0

FIGURE 10.3 Receiver operating characteristic (ROC) curves for a series of bio-
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biomarker should correctly reclassify risk higher or lower and thus 
lead to more accurate overall risk assessment. The reclassification cali-
bration (RC) statistic is a tool that tests how well the average predicted 
risk within a given cell agrees with the observed risk of individuals who 
actually experience the event. Accordingly, the RC statistic addresses 
whether the predicted risk estimates after reclassification (using the 
new biomarker) are more accurate than before reclassification (with-
out the new biomarker). Superior reclassification occurs when the 
new prediction model places case individuals into higher- risk catego-
ries and places control individuals into lower- risk categories, and when 
the net shift in these two effects is in the overall correct direction. This 
characteristic can be addressed by using the net reclassification index 
(NRI), analogous to a test of discrimination (the ability to separate 
cases from controls) in the context of a reclassification table. Broadly, 
the NRI does not depend as much on the actual predicted probabili-
ties as on movement across a categorical risk border that is the result of 
the new probabilities predicted. When reclassification is not addressed 
across categories, an alternative measure is used, called the integrated 
discrimination improvement (IDI), based on the Yates slope, or the dif-
ference in predicted probabilities among case and control individuals. 
Despite their relatively recent introduction, reclassification statistics 
have rapidly become the standard for clinical evaluation of emerging 
biomarkers and alternative multi- biomarker prediction panels. 

External Validation and Impact Studies
A final but important test for any biomarker or biomarker panel when 
used for prognostication, external validation refers to the ability of the 
panel to function with clinically acceptable levels of sensitivity, speci-
ficity, discrimination, and calibration in external populations, distinct 
from the population used for generation of the panel. As Moons and 
coworkers note, prognosis research and prognostic biomarkers differ 
from those used in diagnosis and screening.

Prognostic research involves three distinct phases in the devel-
opment of multivariable prediction models. The first phase is iden-
tification of relevant predictors, assignment of weights to the model, 
estimation of predictive performance, and optimization of fit. The 
second phase involves validation or formal testing of calibration and 
discrimination in new patient groups, which can be similar to those 
used in the development stage or purposely different. The third phase 
involves impact studies to quantify directly whether use of a prognos-
tic model in daily practice actually changes physician behavior and 
decision making, and whether this occurs in a net positive manner and 
is cost- effective. Prognostic impact studies also focus on the incremen-
tal usefulness of a given biomarker beyond simple clinical and non-
clinical characteristics. Such studies tend to be less biologically driven 
than biomarker discovery work and recognize that prediction does not 
necessarily involve a causal pathway. 

Practical Example: High- Sensitivity C- Reactive 
Protein, Lipids, and Reynolds Risk Score
The use of hsCRP in clinical practice is an example of how biomarker 
development programs can move from pathophysiologic principles to 
clinical use and onward to multinational trials evaluating novel targets 
for vascular risk reduction.15 A prospective cohort of initially healthy 
individuals showed that hsCRP predicted future risk for a heart attack 
and stroke in men, an observation externally validated and quickly 
extended to women. Multiple commercial hsCRP assays—reproduc-
ible, internally calibrated, and externally validated to improve assay pre-
cision—then became clinically available. Multiple studies have shown 
that statins reduce hsCRP in a manner largely independent of reduc-
tion of LDL- C, thus suggesting that statins have both lipid- lowering and 
anti- inflammatory effects. The addition of hsCRP to the family history 
and HbA1c was formally incorporated into the Reynolds Risk Score in 
2008.16 This score was subsequently externally validated and shown to 
have superior calibration, discrimination, and reclassification over the 
more traditional Framingham Risk Score. Using hsCRP to define a high- 
risk population in need of treatment, JUPITER (Justification for the Use 
of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin) 

reported in 2008 that statin therapy (vs. placebo) in those with elevated 
hsCRP but low levels of LDL- C resulted in a 50% reduction in myocar-
dial infarction and stroke and a 20% reduction in all- cause mortality. 
By 2010, more than 50 prospective cohort studies evaluating hsCRP 
were subjected to meta- analysis, which affirmed that the magnitude of 
vascular risk associated with a change of 1 SD in hsCRP was at least as 
large as that of a comparable change in cholesterol or blood pressure. 
An updated 2012 meta- analysis of clinical usefulness and risk predic-
tion found that the change in C- statistic associated with hsCRP was 
similar to that associated with the use of total and HDL cholesterol. On 
this basis, several national guidelines incorporated hsCRP screening in 
primary and secondary prevention, and the FDA approved a labeling 
claim for the use of statin therapy in those with elevated hsCRP levels.

CRP itself, however, probably does not cause atherothrombosis, but 
rather serves as a biomarker for the underlying inflammatory process. 
Thus validation of the inflammatory hypothesis of atherosclerosis 
required measurement of clinical outcomes, not solely biomarkers. 
CANTOS (the Canakinumab Anti- inflammatory Thrombosis Outcomes 
Study), evaluated interleukin- 1beta inhibition in individuals who were 
in a stable phase postmyocardial infarction, and were well treated with 
standard secondary prevention measures, but had an hsCRP greater 
than 2 mg/L. CANTOS demonstrated that an anti- inflammatory inter-
vention (as gauged by lowering of hsCRP and other inflammatory bio-
markers such as IL- 6) that did not affect atherogenic lipoprotein levels 
could reduce recurrent major adverse cardiovascular events.9,17 Trials 
with colchicine have validated this concept as discussed in Chapter 
25,18,19 and new trials addressing the potential role of IL- 6 inhibition 
for atheroprotection are underway.20 The use of hsCRP as a biomarker 
laid the groundwork for CANTOS, illustrating the value of biomarkers 
in advancing both pathophysiologic understanding and therapeutics.

Congestive heart failure is another arena where multiple biomarkers 
ranging for troponin to ST2 to IL- 6 to GDF- 15 have been proposed to 
have unique prognostic utility. However, other than data suggesting that 
interventions targeting IL- 1b such as canakinumab21 and anakinra22,23 
may reduce hospitalization for heart failure, little confirmatory evi-
dence is available. 

CONCLUSION
We use biomarkers in our daily clinical practice, and cardiovascular 
journals contain numerous reports regarding biomarkers, new and 
old, that purport to show how they may aid clinical practice. Moreover, 
many cardiovascular trials use biomarkers—thus the current practice 
of cardiovascular medicine requires a firm foundation in understand-
ing and evaluating biomarkers. The road map to the field of biomarkers 
provided in this chapter, including their use, development, and methods 
for evaluating their usefulness for various specific applications, should 
give practitioners tools to sort out the various uses of biomarkers 
encountered in practice and in the cardiovascular literature. Informed 
use of biomarkers can aid in decision making in daily patient care. Bio-
markers should provide a key for personalized management by direct-
ing the right therapy to the right patient at the right time. They can also 
shed mechanistic insight on human pathophysiology that is difficult to 
obtain in other ways. Rigorous and careful use of biomarkers can aid 
in the development of novel therapies to address the residual burden 
of cardiovascular risk.
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