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 11 Artificial Intelligence in Cardiovascular 
Medicine
ZACHI ATTIA, SURAJ KAPA, PETER NOSEWORTHY, AND PAUL FRIEDMAN

Artificial intelligence (AI) is ubiquitous. It autocompletes the sen-
tences we type, populates web searches before we complete our 
thoughts, enables our phones to understand verbal commands, per-
mits cars to drive themselves to destinations we speak, and increas-
ingly supports medical diagnostic tests. In medicine it has identified 
retinal pathology with a skill that exceeds that of a trained ophthal-
mologist, can tirelessly detect mammographic lesions, and identify 
abnormalities on a pathologic slide. Some revile it as a technology 
that will lead to massive unemployment, economic disruption, and 
serve as an existential threat to humanity; others embrace it as the 
tool that will liberate humanity from drudgery and elevate the most 
noble of human tasks.1

Three broad capabilities of AI apply to the field of medicine. The 
first is the automation of fatiguing processes that involve analysis of 
massive amounts of data, such as continuous ECG tracings acquired 
over months. In this context, AI performs human- like tasks at massive 
scale. AI also permits embedding technology in novel forms such as 
clothing and other wearables to extract physiologic information to 
enable continuous monitoring of health. The application of AI also, by 
extension, enables remote monitoring in rural locations, space explora-
tion, and extreme conditions. The second is the ability to extract signals 
beyond that which a human is capable of recognizing, for example 
determining the presence of ventricular function from a standard 12- 
lead electrocardiogram or single- lead ECG acquired from a watch-  or 
smartphone- enabled electrodes. In this context, AI brings new value to 
well-established medical diagnostic tests that exist in current clinical 
workflows and practice. Thirdly, and more broadly, the ability to specifi-
cally, richly, and uniquely characterize an individual’s physiologic data 
allows for a new level of personalized predictive models, potentially 
creating a whole new category of individual “previvors” who know a 
disease is impending before any signs of symptoms develop, opening 
the doors for potential interventions, and with associated social, legal, 
and economic implications. This deep phenotyping may inform addi-
tional fields, such as genetics. AI in medicine is in its early stages; the 
promise is large, but its application requires rigorous testing, vetting, 
and validation, as do all tests that impact human health. Here we focus 
on AI and its role in cardiovascular medicine.

DEFINITIONS AND KEY TERMS

If intelligence is a cake, the bulk of the cake is unsupervised learn-
ing, the icing on the cake is supervised learning, and the cherry  
on the cake is reinforcement learning (RL).

Yann LeCun, 2016

AI is a lay term, referring to machine learning (ML). In his cake anal-
ogy, Dr. Yann LeCun* divides ML into its three main branches and pres-
ents one of the technology’s main challenges—the amount of data 
required for implementation. In all three types of learning (supervised, 
unsupervised, and reinforcement), instead of using an explicit set of 
human- devised rules to interpret a signal, large volumes of data are 
fed to a model, which uses statistical processes to identify relationships 
within the data. In short, the data train the model, free from human 
hypothesis (eFig. 11.1).

Learning
Learning is the process of improving the ability to complete a task based 
on experience. As the task is repeated, ML improves by getting feedback 
(via an error or loss function) and changing the way it performs the task 
(by changing with weights and biases of the mathematical functions that 
comprise the “neurons” in a neural network, for example), until the feed-
back is that the task is done correctly, or at least above a certain standard. 
In all three types of ML, the feedback is the loss function—the difference 
between a wanted outcome (how we think the task should have been 
performed) to the actual outcome (how the task was performed). Learn-
ing, or training, is often computationally intensive. Once trained, many 
networks can then operate with limited computational resources, for 
example on a smartphone. This makes many AI tools massively scalable. 

Supervised Learning
Supervised learning is the most commonly used form of ML. Super-
vised learning requires labeled data (images and captions, ECGs and 
their rhythm description), with labels often provided by human experts. 
The discovery of the rules that explain the relationship between the 
input (a signal) to the output (a label) is called training. For example, 
if ECG samples labeled normal rhythm or atrial fibrillation (AF) are 
fed to a model, it will learn to differentiate between the two rhythms. 
The specific features of the signal used to generate model output are 
determined by the computer during training and are not discernible 
to humans (Fig. 11.1). Thus, AI is at times referred to as a “black box.” In 
most cases, the model will be a parametric function (F) of the inputs, 
and it will be initialized using a set of random parameters (weights). 
During training, in an iterative manner, F is applied on a set of inputs 
with known outputs (the labels). The results of applying the function 

* Yann LeCun, Geoffrey Hinton and Yoshua Bengio—often referred to as the “God-
fathers of AI” or the founding fathers of modern AI research, have were awarded to-
gether the prestigious Turing award in 2018 for their contribution to the AI revolution.
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EFIGURE 11.1 Graphic chart depicting the three major subtypes of machine learning: supervised learning, unsupervised learning, and reinforcement learning. In medicine, 
supervised learning has been most widely used, as it powerfully identifies subtle relationships in data, but at the cost of requiring large datasets for training. Further details in text.
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F on the inputs yields estimated outputs (in the example, the prob-
ability of AF), and with each iteration, using the error between the 
estimated outputs and the real labels, model performance is assessed 
and the function weights are adjusted in a direction to minimize the 
error, improving model performance. The methods used to adjust to 
weights will be described in the “optimization and hyperparameters” 
subsection. The task can be either a classification—determination of 
the appropriate class for a data sample from a limited set of options 
(dogs versus cats, male versus female)—or a regression—a continuous 
value for each sample (age from an image). Because supervised learn-
ing in a neural network is an iterative process, with each step inching 
toward an improved solution, the biggest challenge is that large data-
sets are required. Because each sample in the dataset requires a label, 
attaching an accurate label to each element may be a limiting factor. 

Unsupervised Learning
In unsupervised learning, the task revolves around the structure of 
the data itself. One most common form of unsupervised learning is 
clustering, in which the model clusters data based on its characteris-
tics, instead of based on labels during the training stage. The model 
is fed only unlabeled data, and clusters samples based on similarity, 
using each sample’s distance (Euclidian or other) from other samples. 
If the label of just a few samples in each cluster is known, the label 
of other samples in the cluster can be inferred because all the sam-
ples in that cluster would have similar features, but the model itself 
created the clusters without specific labels on the data elements. An 
example would be the acquisition of multiple ECG segments from a 
patient during a dialysis session at various potassium blood levels. The 
ECG segments could be clustered, and the potassium value of each 
cluster should be similar. Because unsupervised learning requires only 
the raw samples and basic assumptions regarding the data structure 
(such as the number of clusters), the barrier imposed by labeled data 
is lowered. 

Reinforcement Learning
RL develops the optimal strategy for an agent in an environment with 
known rules and rewards. An example would be a chess player—learn-
ing chess by playing against itself, without labels or recorded human 
games. It uses only the rules and the game score. As RL requires known 

rules and rewards, its use in health care is still limited2 and it is outside 
of the scope of this chapter. 

Fully Connected and Convolutional Neural 
Networks
Inspired by the human brain, a fully connected neural network is a 
multi- layer parametric function that implements a nonlinear function 
between the inputs to the outputs (see Fig. 11.1). Each node (neuron) 
in each layer receives a weighted sum of all the nodes in the preceding 
layers and is activated using a nonlinear function. The values of the 
weights are defined during training, as the network learns the relation-
ship between the input and output.

In convolutional neural networks, convolutional filters extract fea-
ture information from images in the convolutional layers, with the 
weights of the filters determined during training, so that the features 
selected are those that best define the desired network output. Both 
types of networks can be either used for classification tasks or for 
regression tasks. 

Optimization and Hyperparameters
During training, the weights of the inputs to each neural in a neural 
network are adjusted so that the output of the function when fed sam-
ples with known labels will be the “closest” to their real labels. The 
difference between network output and the actual label is measured 
using the loss function, and a small loss value indicates network out-
puts close to the real labels. While weights could be randomly set to 
initiate a network and then randomly varied until the loss function is 
sufficiently small, this is clearly an inefficient and impractical way of 
training a network. A more efficient approach is to test a network on a 
set of samples, assess the effect of each of the network weights on the 
error function, and change the neuron weights accordingly. Mathemat-
ically, this is done by taking the derivative (actually, the gradient) of the 
function the network is implementing and changing the weights in the 
opposite direction (as the gradient points toward a higher loss). The 
gradient is approximated using a batch of samples, and the number of 
samples in the batch (“batch size”) affects how accurate and smooth 
the gradient will be. While the gradient indicates the direction in which 
the weights should be adjusted, the magnitude of change (step size) is 
unknown. If a step size is too big, during training the function may step 
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FIGURE 11.1 Graphical depiction of a neural network. Top left: The neural network shown contains four layers. Each layer is composed of “neurons” (bottom panel). Each 
neuron receives multiple inputs, each multiplied by a weight (in1…inn), and a bias (offset) “b” and applies a nonlinear function to generate its output. During network training, 
weights and biases of each neuron are adjusted via backpropagation to minimize an error function (example error function shown top right).

 



A
rtifi

cial In
tellig

en
ce in

 C
ard

io
vascu

lar M
ed

icin
e

111

11
over a minimum of the error function (overcorrect), whereas if it is 
too small, the impact of the updated weights may be too diminutive to 
improve network accuracy, and the network may not converge or take 
a long time to train. Step size and the batch size are network “hyperpa-
rameters”—variables that affect how network parameters are changed 
(i.e., how the network learns during training), but which are not part 
of the final network function itself. Finding optimal hyperparameters 
requires empiric assessments of various combinations and is part of 
the art of network training. Assessing promising combinations of hyper-
parameters is typically performed on a second set of samples not used 
during network training called the internal validation set. Once hyper-
parameters and the network are finalized, the network is tested on a 
third set of samples not previously seen by the network referred to as 
the holdout testing set. 

Transfer Learning
Transfer learning is a method used to apply supervised learning to 
problems for which the datasets available to train a network are rela-
tively small. In this method, a network is developed to solve a problem 
that has enough labeled samples (the “primer”), and then it is retrained 
to solve a similar task with a much smaller dataset. The underlying 
hypothesis is that some of the patterns learned by the model are com-
mon to both tasks but can only be learned with a sufficient number of 
samples. This is similar to a human learning one musical instrument 
proficiently over years, and then requiring much less time and effort to 
learn a related instrument (e.g., guitar and banjo). Using transfer learn-
ing, datasets that may initially appear irrelevant can be used to solve 
specific tasks, and the transfer can be applied to all model parame-
ters (basically seeding the model with weights from a trained model, 
instead of random weights), or to only a subset of parameters by “freez-
ing” some model layers during training to keep the primer model val-
ues but allowing the rest to change. 

CLINICAL USES IN CARDIOVASCULAR 
MEDICINE
ECG- Based Screening, Detection, and 
Prevention
Achieving human- like automated ECG interpretation has been a goal 
since the advent of digital ECG more than 60 years ago.3 Early itera-
tions of the technology were designed to identify fiducial points, make 
discrete measurements, and define common quantifiable abnormali-
ties,4–6 whereas contemporary approaches have moved beyond these 
rule- based approaches to recognize patterns in massive quantities of 
labeled ECG data.7–9 Some early success has been achieved training 
deep neural networks (DNNs) on large datasets of single- lead ECGs 
and applying the algorithms to the 12- lead ECG,8 sometimes outper-
forming expert over- readers.7 In general, however, most algorithms lack 
the accuracy needed for widespread application without human over-
sight,10 and it is likely that these technologies remain a tool to improve 
rather than replace human expertise for the foreseeable future.

For some discrete applications, these algorithms may enable rapid 
diagnosis on novel, patient-  or consumer- facing devices. For example, 
algorithms have been demonstrated to be effective for AF diagnosis 
on a variety of single- lead ECG devices,11–14 and there is great potential 
for making other important diagnoses including QT prolongation,15 
acute myocardial infarction,16 or other arrhythmias (Video 11.1).17 
This “democratization” of ECG technology will exponentially increase  
the volume of signals that demand interpretation, and this will quickly 
outstrip the capacity of human ECG readers. We anticipate that these 
models will be essential in facilitating telehealth technologies—auto-
matic patient-  and consumer- facing technologies.

By leveraging massive labeled datasets, various neural networks can 
be used to move beyond human- like tasks to uncover more subtle pat-
terns in the ECG that have gone unrecognized by even expert ECG 
readers. In doing so, these networks can bring new diagnostic power 
and value to the ECG. For example, the ECG can identify low ejection 

fraction (EF),18 propensity toward AF (observable during normal sinus 
rhythm),19 hypertrophic cardiomyopathy,20 left ventricular hypertro-
phy,21 hyperkalemia,22 age and sex,23 medical comorbidity/frailty, and 
studies are ongoing to identity markers of valvular heart disease, amy-
loidosis, and many other characteristics.

The AI  ECG is an example of adding AI to an existing clinical test 
(the 12- lead ECG), which is already embedded in clinical workflows 
and widely available. In that context it can readily screen for under- 
detected disease, for which therapies exist (Fig. 11.2A). The use of the 
12- lead ECG to identify left ventricular dysfunction (present asymptom-
atically in 3% to 9% of people) is undergoing prospective evaluation 
in a large cluster- design pragmatic trial (EAGLE, discussed later); the 
AI ECG has also been embedded into a stethoscope form factor (i.e., 
a stethoscope with embedded electrodes to record the ECG during 
a normal examination, permitting the application of AI). Due to the 
potential sensitivity of AI tests to detect disease early and provide deep 
phenotyping, it may appear to “predict” future disease, creating a class 
of “previvors” who have not yet experienced a disease (Fig. 11.2B). The 
AI ECG may also have a role to permit inexpensive at- home follow-up 
of patients at risk for ventricular dysfunction, such as those receiving 
chemotherapy or cardiac transplants (Fig. 11.2C). Prospective stud-
ies assessing such use cases are underway (TACTIC, NCT03879629). 
Whether AI tests achieve a sufficient level of predictive power to war-
rant intervention before a disease is manifest by currently used tests 
requires validation (Fig. 11.3), which at present is under development. 
To date, AI- based tools have received FDA approval for rhythm deter-
mination (i.e., to allow scalability of human capabilities). AI to extract 
information beyond what humans can determine (such as ventricular 
dysfunction) is currently under regulatory review. 

Image Interpretation and Procedural Guidance
Cardiac imaging has been a particular focus of modern AI and ML work. 
ML has been used to improve image acquisition, image quality, accuracy 
of interpretation, and enhancing insights into cardiac physiology.

Nuclear Cardiology and Stress Testing
Stress testing by ECG or by nuclear imaging can yield false-positive 
and false-negative results. The prognostic value of either modality 
depends in part effected by patient- specific pre-test likelihood of dis-
ease among other electrocardiographic, clinical, perfusion, and func-
tional variations. The number of variables that can impact accuracy 
of interpretation of functional evaluations for coronary disease may 
lead to a wide variation in predictive accuracy of humans. One study 
of over 2000 patients suggested that an ML algorithm that integrated 
all available patient data (including clinical and electrocardiographic) 
along with imaging data performed better in predictive major adverse 
cardiac events than ML focused on imaging alone or physician inter-
pretation. Furthermore, deep learning approaches can offer statistically 
significant improvements in identification of per- vessel and per- patient 
sensitivity for detection of obstructive coronary disease.1,24 

Echocardiography
The clinical utility of echocardiographic images depends on several 
factors: (1) skill related to image acquisition; (2) image quality; and 
(3) accuracy and consistency of image interpretation.25 Newer hand-
held devices, some of which are smartphone enabled, are inexpensive 
and have made bedside echocardiographic imaging available to many 
individuals with limited training in image acquisition and/or interpre-
tation. Recent work has focused on using AI approaches to facilitate 
remote training of unskilled sonographers as well as for robot- assisted 
echocardiography. The latter significantly improves diagnostic process 
time when done in combination with telemedicine- enabled cardiac 
consultation. Such approaches may help scale not just the availability 
of tools to acquire echocardiographic images but also the capacity to 
acquire high- quality, interpretable images with minimal prior experi-
ence. Because embedded AI in the imaging tool recognizes images of 
diagnostic quality, immediate feedback is given to the bedside imager 
(for example, indicating an image is acceptable, or if not, suggesting 
specific maneuvers to acquire the desired image).
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In addition to facilitating high- quality image acquisition, the scal-
ability of echocardiographic imaging is subject to the same lim-
itations as other imaging modalities—namely the need for expert 
interpretation. Several recent studies have suggested that applying ML 
to echocardiographic images can accurately assess several key vari-
ables (ejection fraction [heart pump strength], heart chamber size, 
and valve function). Such approaches, when applied broadly, may 
allow for rapid and accurate identification of disease, and identifica-
tion of those images that warrant expert over- read.

Finally, AI approaches have the potential to address other aspects of 
ultrasound image acquisition, including image noise and poor image 
quality. In various areas of ultrasound imaging, use of ML can improve 
image classification, detection, and segmentation. Integrated AI algo-
rithms may streamline methodologic tasks ranging from optimizing 
imaging quality through the segmentation and registration of such 
images.26 

Computed Tomography and Magnetic Resonance 
Imaging
Similar to echocardiography and nuclear stress imaging, a key limitation 
of computed tomography (CT) and magnetic resonance imaging (MRI) 
is expert clinician interpretation. AI approaches applied to cardiac 
imaging may improve the consistency and accuracy of interpretation of 
images. Beyond interpretation, AI approaches to image acquisition may 
reduce the time required to acquire high- quality MRI and CT images 
while limiting motion or other artifact. Finally, AI can scale and improve 
the speed of segmentation and reconstruction of data from MRI and CT. 
Recent reviews have summarized this evolving area.27 

Coronary Arteriography
A final area of modern application of AI and ML to cardiac care is in 
the catheterization laboratory. The accuracy of pre- procedural evalu-
ation (reducing false-positives and false-negatives from stress testing, 
accurate identification of lesion severity from noninvasive CT evalua-
tion), consistency of interpretation of images acquired in real time, to 
enhancement of interpretation of complex lesions, and the appropri-
ate choices in management may be facilitated by ML and deep learn-
ing algorithms. ML approaches may extract fractional flow reserve and 
lesion severity from CT coronary angiography.28 This application may 
improve identification of those patients appropriate for coronary inter-
vention. In addition, AI may offer value in interventional cardiology 
by predicting stent size and length, likelihood of future stenosis, and 
complex lesion characteristics (irregular lumen shape, invasive frac-
tional flow reserve from cinegraphic images) which would tradition-
ally require the use of additional tools (pressure wires, intravascular 
ultrasound).29 

Natural Language Processing and Structured 
Data Analysis
Structured data elements within the electronic health record are read-
ily available for predictive analytics and can facilitate rapid, point- of- 
care decision support. However, much of the electronic health record 
(EHR) contains free text that requires additional processing for data 
abstraction. Traditional rule- based approaches to extract clinical data 
from free text are prone to misclassification due to the complexities 

of natural language structure, and more sophisticated models are 
emerging as more reliable alternatives. These approaches may include 
hybrid training of models using text vectorization and output tags that 
are fed into ML models or even completely unsupervised topic mod-
eling. Because natural language processing (NLP) is not restricted by 
predefined diagnostic codes, an optimized NLP model has the ability 
to recognize even complex language patterns by comprehensively 
assessing all available documentation, thus improving the accuracy in 
capturing potentially ambiguous diagnoses. 

Risk Scores (Deep Phenotyping)
The vast repositories of structured and unstructured patient data now 
available within EHRs offer an opportunity to generate risk scores 
and characterize patient phenotypes on a large scale. Such tech-
nologies promise to streamline patient care, identify individuals at 
risk of adverse outcome, and recognize and reinforce best practices. 
Often, these deep phenotyping approaches use a hybrid deep-learn-
ing model structure to distill the complicated relationships hidden 
in the data. This may include models that transform event structures 
into deep clinical-concept embedding and use a recurrent neural 
network (RNN) to predict outcomes over time. For example, one 
large- scale retrospective study using over 3 million patient records 
demonstrated that both traditional statistical approaches and novel 
ML models can predict risk of AF.30 Similar approaches have been 
used to identify patients with heart failure,31 to predict risk of hos-
pitalization,32 diagnose diabetes and peripheral artery disease, and 
generally have superior performance than relying on structured data 
alone.26,33,34 Public repositories of these algorithms, such as the Pheno-
type KnowledgeBase (PheKB),35 now contain algorithms for 50 to 60 
medical conditions and many have demonstrated good performance 
when implemented across different health systems.36–40 

IMPLEMENTING ARTIFICIAL INTELLIGENCE 
INTO CLINICAL PRACTICE
AI stands to increase the power of existing tests and transform many 
mundane accessories (e.g., stethoscopes, shirts, watches) into sources 
of medically diagnostic information (eFig. 11.2). Several key issues 
need to be addressed as computational algorithms are applied to 
clinical cardiology practice. Standards will likely need to be set, for 
example, on optimal approaches to testing and validation of these 
algorithms. Questions such as diversity of the training and testing sets 
and how to ensure that an algorithm will function similarly on data 
acquired at centers beyond the center(s) where the initial algorithm 
was developed are still evolving questions. Furthermore, studies are 
needed to understand how best to optimize real- time, clinical imple-
mentation of AI- enabled alerts. For example, AI algorithms that stream-
line data acquisition, interpretation, and reporting may be more easily 
integrated into practice. However, as such algorithms become more 
integrated into systems, the potential for human oversight and correc-
tion may decrease. In turn, AI- managed alerts that allow for advanced 
recognition of disease (e.g., EF from a 12- lead ECG) may not have 
significant impact if not implemented in such a way that physicians 
appropriately react to the alert. Large prospective studies to assess 
the impact on workflow and real- world impact are needed and are 

FIGURE 11.2 A, Electrocardiogram acquired from a 35- year- old asymptomatic man who presented after his sister died suddenly, read as normal. An AI- ECG algorithm 
reported a 76% probability of having a low ejection fraction. Subsequent echocardiography demonstrated an ejection fraction of 18%. He was ultimately diagnosed with familial 
dilated cardiomyopathy. B, Left, Electrocardiogram from a 28- year- old man, read as normal. The AI-ECG algorithm indicated a high probability of an ejection fraction less than 
35% (positive test). Echocardiography at that time reported an ejection fraction (EF) of 50% suggesting a false-positive. However, the patient developed ventricular dysfunction, 
with an EF of 31% 5 years later. In some patients, the AI algorithm may identify subtle features that may predict future development of low EF. This situation illustrates the 
concept of disease “previvors,” and in this case may result from pathophysiologic changes impacting ion channels and electrical impulse generation before mechanical function is 
affected, although the mechanism remains unproven. Right, The increased risk of developing left ventricular dysfunction with a positive AI-ECG screen for ventricular dysfunction. 
C, Plot of the AI- ECG outputs for all of the ECGs for an individual patient, taken from the Mayo Clinic Cardiology AI dashboard. Each point on the graph is generated by a single 
ECG, with the abscissa indicative of the date of the ECG, and the ordinate the probability of ventricular dysfunction. The patient had a dilated cardiomyopathy, and confirmed 
low ejection fraction (EF; red points, left of 2005 on the graph). He received a cardiac transplant, with normalization of his ejection fraction, and subsequent low probability of 
low EF by AI- ECG (blue points). In 2020 he suffered rejection and ventricular dysfunction, identified by the AI- ECG (red points at 2020). (B from Attia ZI, Kapa S, Lopez- Jimenez 
F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence- enabled electrocardiogram. Nat Med. 2019;25:70–74.)
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AI Human

EFIGURE 11.2 Diagram depicting the AI ECG as a platform from remote monitoring. Far left, Multiple form factors have been used to collect ECG and other physiologic 
signals. These are transmitted typically via cellular technology to a cloud for AI processing, designed to generate direct patient or technician alerts in the event of actionable 
abnormalities. AI, Artificial intelligence.
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underway.41 Mayo Clinic has developed an AI dashboard accessible 
via the EMR that automatically ingests all ECGs available in the EMR 
and displays multiple AI analyses in an interactive, graphical format  
( Video 11.2, eFig. 11.3).

Other key areas of consideration when implementing AI and ML into 
clinical practice include how to allow for continuous adaptation of the 
algorithms to new data, associated regulatory implications, and how 
algorithms and data should interact. Continuous exposure to new data, 
which improves diversity of cases to which a clinician gets exposed 
thus improves clinical expertise. Ideally, systems that use AI algorithms 
will continue to evolve in response to their correct and incorrect inter-
pretations, strengthening the overall model over time. However, the 
minimal standards to support regulatory approval of a given algorithm 
still require review. Furthermore, regulatory standards and approvals 
may vary between countries.42 Finally, the question of how algorithms 
are practically deployed across institutions or countries remains to 
be determined. Many algorithms require such computational power 
as to only be operational in cloud- based systems. However, many data 
frameworks impose restrictions on sending data to centralized, cloud- 
based servers. Whether algorithms should be individually supplied to 
individual institutions (limiting the opportunity for continuous learn-
ing and leading to potential scalability issues due to the availability of 
adequate computational power at every local site) or enabled through 
cloud- based systems that allow data to be sent to a centralized frame-
work (creating concerns regarding data sharing and data privacy) is an 
area of active discussion and will likely require policy discussions at a 
national and international level.

Pitfalls and Limitations of Artificial 
Intelligence in Cardiovascular Medicine
Despite the immense promise of ML, a number of considerations have 
impeded its development and require addressing. Before neural net-
works can be trained, data must be accessed in a usable format, and for 
many forms of ML, clearly labeled. This requires subject matter experts 
as well as technical experts. Data ownership remains an unresolved 
issue, particularly with patient data. Use of an individual’s data in ML 
exposes them to risk of loss of privacy, and at the same time a third 
party may yield financial benefit, raising potential conflicts of interest. 
The training of many networks requires large quantities of data, often 
necessitating accumulation of data from more than a single institution, 
again with concerns relating to privacy and data ownership. There is 
currently a lack of well- established quality standards or a centralized 
clearinghouse for vetted technologies.

Deep learning has the capability to make deep connections within 
data but can only learn from data to which it was exposed. Any preex-
isting biases that lead to exclusion from the training set may lead to 
unreliable results when fed into a clinically used network. Examples 
have included a higher rate of misidentification of black versus white 
populations in facial recognition software. In medicine, false associa-
tions could lead to a prediction of increased mortality due to place 
of residence, socioeconomic status, and other nonmedical correlates.

Neural networks have been subject to adversarial attacks in which 
pixels are modified of an image with no visible effects to a human 
observer, yet with complete change in classification, the network out-
put (Fig. 11.4). Such attacks could lead to misclassification and mis-
diagnosis and raise questions about the lack of understanding of the 
mechanism of network classification. This leads to the “black box 
issue” in that the components of a signal used by a network to make 
its determination are not known to humans, raising concerns about 
their broad spread deployment. Careful clinical testing and vetting can 
mitigate this concern.

Lastly, physician engagement and thoughtful assessment of work-
flow and implementation are essential for the adoption of AI tools in 
clinical practice. Technology- driven solutions (such as many EHRs) 
have paradoxically led to physician burnout and patient dissatisfac-
tion and have failed to fulfill their promise. Careful attention to user 
interfaces, patient and physician use requirements, meticulous valida-
tion, and outcomes- based observations will be essential to permit AI to 
improve clinical practice. 

CONCLUSIONS
In summary, the application of ML to physiologic data stands poised 
to transform the practice of medicine. Many AI algorithms will be inte-
grated into devices used by clinicians (including the electronic med-
ical record); others may be stand- alone tools. While AI is unlikely to 
replace physicians, physicians who use ML tools will likely supplant 
those who do not. Much like the electrocardiogram at the turn of the 
century or the echocardiogram several decades ago, ML offers new 
ways to probe an individual’s current state and to gauge more accu-
rately its future state, and thus work to improve the human condition. 
But as with any medical tool, it requires proper testing, validation, and 
prospective assessment, as well as a compassionate and caring clini-
cian to deploy, apply, and interpret its findings to help the human seek-
ing care.
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FIGURE 11.4 Examples of adversarial attacks on 
neural networks. An ECG (blue tracing) is correctly 
classified as being acquired from a man by a neural 
network. The addition of sub- clinical noise to the 
signal (red tracing) leads the network to misclassify 
the tracing as that belonging to a woman, despite 
the absence of significant change to a human 
observer. The images below the ECG depict simi-
lar adversarial network attacks against a network 
designed for image classification. The addition of 
apparent noise results in no visible change to a 
human observer, but misclassification of a panda 
as a gibbon by the network, as well as a similar 
disruption using a different image.
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